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Abstract

This paper addresses the problem of image annotation
for segmentation tasks. Semantic segmentation involves la-
beling each pixel in an image with predefined categories,
such as sky, cars, roads, and humans. Deep learning mod-
els require numerous annotated images for effective train-
ing, but manual annotation is slow and time-consuming. To
mitigate this challenge, we leverage the Segment Anything
Model (SAM) [23] — a vision foundation model. We intro-
duce SegBuilder, a framework that incorporates SAM to au-
tomatically generate segments, which are then tagged by
human annotators using a quick selection list. To demon-
strate SegBuilder’s effectiveness, we introduced a novel
dataset for image segmentation in underwater environments
featuring animals such as sea lions, beavers, and jellyfish.
Experiments on this dataset showed that SegBuilder signif-
icantly speeds up the annotation process compared to the
publicly available tool, Label Studio [3]]. SegBuilder also
includes a free-form drawing tool, allowing users to cre-
ate correct segments missed by SAM. This feature is par-
ticularly useful for scenes with shadows, camouflaged ob-
jects, and part-based segmentation tasks where SAM falls
short. Experimentally, we demonstrated SegBuilder’s effi-
cacy in these scenarios, showcasing its potential for gen-
erating pixel-wise annotations crucial for training robust
deep learning models for semantic segmentation.

1. Introduction

Semantic segmentation models are gaining critical im-
portance due to their broad range of applications in fields
such as autonomous driving, medical imaging, and vir-
tual/augmented reality. The goal of a semantic segmenta-
tion model is to automatically assign labels to each pixel
in an image, facilitating dense pixel-level prediction. The
availability of a sufficient amount of pixel-level image an-
notation data is pivotal for training deep neural network
models intended for semantic segmentation tasks. Manual
annotation for image segmentation, facilitated by tools such
as LabelStudio [31] or LabelMe [33], typically involves an-

notators drawing polygons, which poses scalability chal-
lenges due to its time-consuming nature, labor intensity, and
the need for user expertise. To address these issues, we pro-
pose SegBuilder, a semi-automatic tool designed to enhance
the efficiency of manual annotation. SegBuilder stream-
lines the annotation process by utilizing a vision-foundation
model such as the Segment Anything Model (SAM) [10]
to create object masks. These masks represent meaning-
ful regions but lack inherent class information. We enable
human annotators to quickly assign labels from a selection
list, achieving pixel-wise annotation for each selected mask
in a semi-automatic manner. This approach accelerates an-
notation, reduces labor requirements, and enhances cost-
effectiveness compared to current tools. Our contributions
are threefold, as discussed next.

First, we introduced a novel semi-automatic web-based
tool called SegBuilder, representing a contribution at the
system level in terms of both the underlying approach and
the implemented tool itself. It is a novel system that com-
bines SAM-generated segmentation with a human-in-the-
loop approach to semi-automate the annotation process. It
can be applied across different domains and types of im-
age data, making it versatile for a wide range of appli-
cations. We have publicly released our tool at https:
//github.com/alimoorreza/segbuilder—-vl,
facilitating access for the research community and encour-
aging potential collaborative improvements and future de-
velopment.

Second, we demonstrated the effectiveness of Seg-
Builder by conducting comprehensive experimentation for
a variety of segmentation annotation tasks in diverse envi-
ronments such as outdoor and underwater settings.

i) Semantic segmentation annotation task. We began by
fully annotating a dataset of 635 images using SegBuilder
in a semi-automatic manner. To demonstrate the efficiency
of SegBuilder, we compared the time savings achieved with
those of manual annotation methods [31]. Our compari-
son with existing manual annotation tools [3 1] indicates that
SegBuilder can accelerate the annotation process by a fac-
tor of more than three. To further illustrate the application
of these annotations, we trained a semantic segmentation
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Figure 1. Semi-automatic pixel-level annotation process using SegBuilder.

model using the annotated images, thereby demonstrating
the efficacy of our annotations.

ii) Scene annotation under challenging scenarios. Seg-
mentation using SAM [23] and its derivatives, such as
LabelMe-with-SAM [3], fails to automatically segment
scenes in challenging scenarios, including i) camouflage,
and ii) shadows [10]. We selected a subset of images
featuring camouflage and shadows to demonstrate SAM’s
inconsistent segmentation performance in these contexts.
Our tool, SegBuilder, enables the readjustment of an-
notations using additional features, and our experiments
showed that it effectively facilitates the segmentation of im-
ages containing camouflage and shadows. Although the
SAM Adapter [10] was introduced to enhance the detec-
tion of camouflaged objects and shadows, our approach
does not involve proposing a new adaptation method. In-
stead, SegBuilder provides an alternative solution for ad-
dressing missing regions in camouflage and shadow detec-
tion through a human-in-the-loop strategy, rather than inte-
grating a new trainable module like SAM Adapter.

iii) Part annotation task. The part annotation task involves
annotating images with individual parts (e.g., refrigerator
door, cabinet door, microwave handle, etc.) [26, 35]. Since
SAM was trained on full object mask annotations by design,
it will not perform well at predicting parts. However, part
annotation is crucial for applications in robotics and virtual
reality (VR) or augmented reality (AR). Therefore, appli-
cations aimed at predicting parts require further annotation,
which is where our tool becomes useful. SegBuilder al-
lows us to readjust the annotations using our additional tool.
We demonstrated that semantic part annotation on the Par-
tImageNet dataset [20] using SAM fails to cover important
object parts. In contrast, SegBuilder effectively addresses
these annotation failures, ensuring comprehensive coverage
of all relevant parts.

Finally, we contribute a new dataset called UWSv2
(“Underwater Segmentation version 2”) of 635 images
which complements the existing underwater datasets by
adding more diversity to the animal-centric semantic seg-
mentation dataset [22].

Why we need a new tool like SegBuilder. Our tool

enables the integration of SAM while simultaneously pro-
viding functionality to correct and refine the segmentation
annotations. There are two key reasons why our tool could
prove useful. First, SAM struggles to segment images
that are perceptually challenging even for humans, such as
those involving camouflage or shadows [10]. It also faces
difficulties with systems that require part annotation [36].
Therefore, simply integrating SAM is inadequate unless it
is adapted through our refinement annotation tool to ad-
dress issues with incomplete annotations. LabelMe [29],
a well-known annotation tool in computer vision, does not
natively integrate with models like SAM. Although some
community members have created SAM integrations for
LabelMe, these projects are often personal, with limited
documentation and maintenance. For instance, LabelMe-
with-SAM [3]' faces challenges in effectively combining
LabelMe with SAM due to limited documentation and lack
of native integration with large models. Second, many of
these systems offer Al capabilities like SAM integration,
but only through an additional paid subscription [3], which
could hinder academic research efforts due to the cost bar-
rier.

2. Related Work

Annotation tools for segmentation. Pixel-level image
annotation is significantly more time-consuming compared
to bounding box annotation for object detection. Segments
are typically annotated as polygonal regions defined by a se-
ries of points on the image. Various tools exist for this pur-
pose, including LibLabel [18], the COCO-Stuff Annotation
Tool [12], and LabelMe [29, 33]. A more recent addition to
these tools is Label Studio [31].

Segmentation. Classical segmentation methods em-
ploy a variety of algorithms, such as minimum spanning
tree-based segmentation [15], normalized cut [30], and
clustering-based segmentation like SLIC [7]. These tech-
niques have the advantage of not relying on training data;
however, they are often prone to under-segmentation or

https://github.com/originlake / labelme - with -
segment—-anything
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Figure 2. Sample views of the interface of our web-based tool SegBuilder.

over-segmentation and require parameter tuning. More re-
cently, models like GPT-4V [27] and LLaVa [24] have been
trained on diverse, internet-scale data using self-supervised
learning. These models effectively align visual concepts
with language descriptions and can be fine-tuned for nu-
merous downstream applications. These foundation mod-
els [8,38] have demonstrated impressive zero-shot general-
ization across a wide range of tasks. Following this trend,
the Segment Anything Model (SAM) [23]—a vision foun-
dation model—has demonstrated a remarkable ability to
segment scenes in open-world settings. This capability has
paved the way for its application to a wide range of prob-
lems, including segmentation for RGB-D scenes [9], med-
ical image segmentation [25], image inpainting [39], im-
age tagging [40], and object tracking [37]. Building on this
foundation, we developed SegBuilder to leverage SAM for
dense pixel-level image annotation task.

Object part segmentation. Motivated by the founda-
tional observation of Fischler and Elschlager [17], picto-
rial structure framework was introduced which posits that
objects can be represented as a collection of their parts in
a deformable configuration, several energy-based models
have been proposed for object detection [13, 14, 16]. Seg-
mentation models for object parts were also proposed ei-
ther in probabilistic graphical model [35] or deep neural
network [26] frameworks. Several benchmarks have been
proposed in the literature in both synthetic and real im-
age formats such as PartlmageNet [20], Pascal Part [11],
PACO (Part and Attributes in Common Objects) [28],
OPD [21], OPDMulti [32], OPD-Synth [21], and PartNet-
Mobility [36].

3. SegBuilder Framework

The goal of SegBuilder is to enable fast, web-based seg-
mentation annotations of a collection of images by utiliz-
ing SAM-generated image masks augmented with manual
editing for cases when SAM fails. The dense pixel-level
annotation process pipeline of SegBuilder is shown in Fig-

ure 1. Next, we briefly describe SegBuilder’s annotation
tool, project and image management features, and imple-
mentation and deployment considerations.

3.1. SegBuilder Annotation Tool

The primary SegBuilder function is the annotation tool,
which displays an image along with a series of SAM-
generated masks sorted from largest to smallest 2b. Seg-
Builder stores each mask as a compressed binary mask with
the same dimensions as the image in order to preserve the
tight segmentation quality provided by SAM. Each mask
has several user interface components to facilitate speedy
annotation:

e Label Drop-Down: a drop-down menu in which the
user may select a label to associate with the mask (de-
faulting to a project-specific value, usually unlabeled)

* Move-to-Front Button: a button to move the mask to
the front of the mask ordering

» Edit Button: a button to edit the mask

* Delete Button: a button to delete the mask
The user may also generate custom masks by drawing on
the displayed image using a free-form drawing tool (see
Fig. 3b), which creates a polygon that can then be converted
into a mask using the Generate Manual Mask button, which
can then be labeled like the SAM masks. The drawing fea-
ture allows for zooming, panning, and moving of polygon
points. When an existing mask is edited, it is converted into
a polygon and may be edited in the same way.

When the user has finished labeling the masks, they click
the Generate Composite Mask Image, which layers each of
the masks in order, rendering each mask in the color as-
signed to its label. A variant composite image, in which the
masks are shown semi-transparently on top of the original
image, is also displayed.

3.2. Project and Image Management

SegBuilder allows the user to organize their images into
projects (see Fig. 2a), in which each image shares the same



(a) Input image

(b) Polygon annotation module.

Figure 3. Polygon-based annotation module in SegBuilder. Polygon based annotation to address missing segments. This tool can be used

to annotate part-based segmentation.

set of possible class labels. For each project, there is a
Classes tab where the user can enter class labels and assign
a color to them. These are the values that will be used to
populate the annotation tool’s mask drow-down menus. The
interface includes options for uploading and downloading
the color scheme in JSON format so that it can be utilized
by other tools in a computer vision pipeline.

The Files tab lists the projects image files and includes a
file-upload drop zone for adding new images (see Fig. 2c).
Files which do not yet have any masks available are shown
in white (not ready for labeling), files with masks but no
composite mask images are shown in blue (ready for label-
ing), and files which have had composite mask images gen-
erated are green (finished labeling). This tab also includes
a bulk download feature in which image files, their mask
collections SegBuilder Image File (.sgbdi), and their com-
posite mask images can be selected, compressed into a zip
file, and downloaded.

3.3. Implementation and Deployment

SegBuilder uses Dash [ 1], a Python web framework de-
veloped by Plotly [4], that is built on React [5] for the front-
end and Flask [2] for the back-end. The source code can
be found at https://github.com/alimoorreza/
segbuilder—vl. Itis configured to run in a Docker con-
tainer, which can be deployed to a compatible web server or
run locally. By default, it utilizes Amazon Web Services re-
sources for file storage (S3) and user/project databases (Dy-
namoDB); though it can be configured to emulate these lo-
cally for development or single-user mode. There is a sepa-
rate utility for creating new users, though users can change
their own passwords through the user interface.

Because of the compute resources needed for generating
SAM masks, we have provided a separate utility that users
can use to generate these on their own machines, which cre-
ates a SegBuilder Image File (.sgbdi) which can be uploaded
to a SegBuilder the same way normal image files are up-
loaded. SegBuilder can be deployed to automatically gener-
ate SAM masks using cloud compute resources and can also

host a publicly available instance of SegBuilder. To demon-
strate its functionalities, we collected a new dataset in an
underwater environment and performed its dense pixel-wise
annotation, which we discuss next.

4. Dataset

We introduce a novel dataset comprising 635 images
with dense pixel-wise annotations, accomplished using our
SegBuilder tool. To collect the images in our dataset, we
used query terms such as goldfish, platypus, hippo, beaver,
and lobster. This dataset enhances the existing underwater
dataset by incorporating greater diversity into the current
animal-centric dataset for semantic segmentation, known as
the UWS dataset [22]. It includes 21 new underwater an-
imal categories not present in the existing animal-centric
dataset for semantic segmentation [22], thereby comple-
menting the UWS dataset. The UWS dataset did not contain
any fish categories. In our dataset, we incorporated vari-
ous species of fish, such as barracouta, billfish, coho, eel,
goldfish, jellyfish, lionfish, puffer, rock beauty, sturgeon, and
tench. Additionally, we included new animal categories:
beaver, duck, dugong, hippo, lobster, platypus, nautilus, sea
cucumber, sea lion, and sea snake. We also added approx-
imately 50 more images of two animals already present in
the UWS dataset: sea anemone and sea urchin. Follow-
ing the UWS dataset [22], eight background categories were
considered during the annotation process: coral, rock, wa-
ter, sand, plant, human, iceberg, and reef. We refer to this
new dataset as UWSv2 (“Underwater Segmentation version
2”). Figure 5 illustrates the distribution of images across
various animal categories.

Tool Average Time (sec) | Average Time (min:sec)
Label Studio 230.34 3:50
SegBuilder 69.02 1:09

Table 1. Comparison of average annotation times


https://github.com/alimoorreza/segbuilder-v1
https://github.com/alimoorreza/segbuilder-v1

Figure 4. Sample annotated images using SegBuilder in the new
dataset. Each row denotes a separate sample image in our dataset
containing animals such as barracouta, duck, dugong, hippo, and
lion fish. The first column denotes the RGB images and sec-
ond column denotes the semantically annotated outputs from Seg-
Builder.
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Figure 5. Distribution of animals in our new dataset introduced in
this work.
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Figure 6. Comparison of annotation times between SegBuilder
and the baseline tool Label Studio [31].

5. Experiments
5.1. SegBuilder for Semantic Segmentation

We demonstrate the application of SegBuilder for se-
mantic segmentation tasks using our newly introduced
UWSv2 dataset, although it is applicable to any segmen-
tation task. First, we present the annotation efficiency
achieved by our semi-automatic method in comparison to
manual annotation tools such as Label Studio [31]. Subse-
quently, we demonstrate the effectiveness of the annotated
images in training a semantic segmentation model, evalu-
ated both qualitatively and quantitatively.

SegBuilder vs. LabelStudio [31] Annotation Compari-
son. We conducted an efficiency comparison of annota-
tion for dense pixel-wise tasks against the existing tool La-
bel Studio [31]. A subset of 23 images representing all an-
imal categories in our dataset was randomly selected and
annotated by 4 in-house annotators. The same set of im-
ages was annotated first using our tool SegBuilder and then
reannotated using Label Studio for comparison. Annota-
tors recorded their annotation times for both tools. Fig-
ure 6 provides a comparison of the average annotation times
for the four individual annotators. On average, annotating
an image with Label Studio takes 3 minutes and 50 sec-
onds, while annotation with SegBuilder is completed in 1
minute and 9 seconds. Thus, SegBuilder achieved 3.34x
faster annotation times compared to Label Studio. Detailed
statistics are provided in Table 1. It is important to under-
score that SegBuilder operates on the segments generated
by SAM. With the aid of additional editing tools offered
by SegBuilder, its output can only improve in quality, as
evidenced in Figure 11 illustrates the part annotation exper-
iment, which demonstrates consistent performance without
deterioration. Therefore, we adopted SegBuilder’s refined
annotations as our final ground truth. In our next experi-
ment, we demonstrated that the ground truth produced by
SegBuilder can be used to train a semantic segmentation
model.



Class Names

Model Sea Anemone Sea Urchin Coral Rock Water Sand Plant Human Reef Other Beaver
HRNetV2 [34] 0.7456 0.2799 0.0000 0.3085 0.7933 0.4409 0.3277 0.4157 0.4502 0.0794 0.7796
Duck Dugong Hippo Lobster Platypus Nautilus Sea Cucumber SeaLion Sea Snake Barracouta Billfish
HRNetV2 [34] 0.6061 0.8479 0.7757 0.8587 0.7377 0.9222 0.5058 0.6634 0.7358 0.7945 0.7692
Coho Eel Goldfish Jellyfish Lionfish  Puffer Rock Beauty  Sturgeon Tench mloU
HRNetV2 [34] 0.8233 0.5877 0.7133 0.8382 0.9234 0.6311 0.5132 0.7360 0.7847 0.6254

Table 2. Semantic segmentation results on the newly introduced and annotated dataset utilizing SegBuilder.

Semantic segmentation model. For underwater seman-
tic segmentation with diverse animal categories, HR-
NetV2 [34] has been reported to achieve the best perfor-
mance, as shown in the work of Imran et al. [22]. Accord-
ingly, we trained HRNetV2 on our dataset. We randomly
split the dataset into a training set of 500 images and a test
set of 135 images. Standard data augmentation techniques,
such as random flip, shift, and rotation, were applied dur-
ing training. The method was evaluated using the standard
mean loU metric for semantic segmentation. We report the
individual IoU for each class in Table 2. HRNetV2 [34]
model was trained for 360 epochs and the best mloU of
62.54% was achieved in 22" epoch. Thus, we estab-
lished baseline performance using HRNetv2 on the newly
introduced dataset UWSv2. The model was trained on two
Nvidia Titan Xp GPUs.

5.2. SegBuilder for Scene Segmentation under
Camouflage and Shadows

While SAM and its derivatives have shown promising
results in general image segmentation tasks, they face chal-
lenges in certain complex scenarios such as: camouflage
and shadows due to altered visual features and ambigu-
ous boundaries [10]. To address these limitations, Seg-
Builder allows for manual readjustment of annotations, sig-
nificantly improving the accuracy and efficiency of the seg-
mentation process. SAM’s segmentation performance ex-
hibits notable variability across different image conditions
and object types. This inconsistency stems from limitations
in training data, challenges in generalization, dependency
on input prompts, and inherent model constraints. SAM’s
performance can be particularly unreliable in edge cases
that fall outside its learned parameters, such as images with
camouflaged objects or complex shadow patterns. These
variations in effectiveness highlight the need for flexible
annotation tools that can leverage SAM’s strengths while
providing intuitive interfaces for manual correction in chal-
lenging cases.

Experimental setup. We conducted two experiments to
showcase the efficacy of our tool in handling images with
camouflage and shadows. Due to the unavailability of data
from the work of [10], we utilized the Adaptive Camou-
flaged Dataset (ACD1K) [19] for our camouflage experi-

Figure 7. Annotation comparisons between SegBuilder and SAM
on images featuring camouflaged objects. The figure displays sev-
eral sample images arranged from top to bottom. Each row shows
an image (left column), its corresponding SAM segmentation out-
put (middle column), and the segmentation obtained using Seg-
Builder (right column). The segmentation results clearly demon-
strate SAM’s inability to accurately segment camouflaged objects.

ments and the SBU Shadow dataset [6] for our shadow ex-
periments. We randomly selected 24 images from these two
datasets with the sample distribution shown in Figure 9.
Experimental observations. The capability to readjust
annotations in our tool proved essential in handling the in-
tricate boundaries created by shadows. This feature enabled
annotators to promptly correct errors made by the auto-
mated system, resulting in both time savings and enhanced
accuracy. Figure 8 showcases sample images with shadows



Figure 8. Annotation comparisons between SegBuilder and SAM
on images featuring objects with shadows. The figure displays
several sample images arranged from top to bottom. Each row
shows an image (left column), its corresponding SAM segmenta-
tion output (middle column), and the segmentation obtained us-
ing SegBuilder (right column). The segmentation results clearly
demonstrate SAM’s inability to accurately segment shadows.
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Figure 9. The distribution of images with camouflages and shad-
ows used in our experiments.

where SAM fails to produce accurate segmentation, con-
trasting with SegBuilder’s ability to correct annotations ef-
fectively. Similar observations were made in our camou-
flage experiments, depicted in Figure 7, where SAM strug-
gled to achieve accurate segmentation. In contrast, Seg-
Builder allowed for adjustments to annotations, facilitating
correct segmentation outcomes.

5.3. SegBuilder for Part-based Segmentation

Object part segmentation has useful applications in fine-
grained object classification, pose estimation, and object re-
identification.
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Figure 10. The distribution of images from 11 super-categories
taken from the PartImageNet dataset [20] used in our experiments.

Although SAM [10] has demonstrated remarkable capa-
bilities in general object segmentation, it exhibits signifi-
cant limitations in part segmentation. SAM often struggles
to accurately delineate individual parts within objects due
to reasons such as lack of part-specific training, ambiguous
boundaries, and high variability in part appearances. These
limitations underscore the necessity for a specialized tool
dedicated to part-based annotation.

To address SAM’s shortcomings in part segmentation,
our SegBuilder framework offers several advantages. With
its polygon-based approach, SegBuilder provides users pre-
cise control over part boundaries while maintaining effi-
ciency. To validate the effectiveness of SegBuilder com-
pared to SAM, we conducted experiments using the PartIm-
ageNet [20] dataset. This dataset was selected for its diverse
range of objects and well-defined part annotations, estab-
lishing a robust benchmark for part segmentation tasks.

Experimental setup. PartlmageNet provides fine-
grained annotations for 158 objects categories under 11
super-categories, i.e., fish, quadruped, reptile, snake, bird,
aeroplane, car, biped, bicycle, boat, and bottle. We selected
a subset of 58 images from PartImageNet [20], covering all
the 11 super-categories. Figure 10 shows the distribution
of images from different super-categories used in our ex-
periment. This dataset specifies a variable number of part
annotations based on the super-categories. For instance, the
aeroplane category comprises five parts: Head, Body, Wing,
Engine, and Tail. In contrast, the boat category includes
two parts: Body and Sail. We compared SAM-only anno-
tation, where SAM was applied to selected images without
additional prompts or human intervention, with SegBuilder-
assisted annotation, which utilized our SegBuilder tool for
the same images, allowing human guidance in the process.

Experimental observations. Our experiments yielded
the following key findings. SegBuilder consistently pro-
duced more accurate part segmentations compared to SAM
alone. SAM often missed smaller or less distinct parts,




Figure 11. Part segmentation on sample images from the PartIm-
ageNet dataset. From top to bottom, we present sample images
from each of the super-categories: fish, quadruped, reptile, snake,
bird, aeroplane, car, and boat. Each row displays an image (left
column), its corresponding SAM segmentation output (middle col-
umn), and the segmentation obtained using SegBuilder (right col-
umn). The segmentation results clearly show that SAM fails to
accurately segment essential parts. The additional tool we in-
troduced in SegBuilder allows for reannotation of regions corre-
sponding to different parts.

while SegBuilder allowed annotators to capture all relevant
parts, resulting in an increased part detection rate. Figure 11
presents qualitative results on representative images for the

supercategories fish, quadruped, reptile, snake, bird, aero-
plane, car, and boat. Samples for the remaining three su-
percategories are provided in the supplementary material.
The visual comparison, particularly in the first three rows,
demonstrates that SAM (center column) fails to capture ob-
ject parts in the fish, quadruped, and reptile supercategories.
The missing parts, such as Head, Body, Fin, Tail for fish and
Head, Body, Foot, Tail for both quadruped and reptile, have
been re-annotated using the SegBuilder (third column) with
the assistance of the Edit tool. The remaining four rows in
Figure 11 illustrate a similar recovery of part annotations
using SegBuilder in instances where SAM fails. These re-
sults demonstrate that, while SAM is a powerful tool for
general segmentation, it falls short in the specialized task
of part segmentation. SegBuilder, with its polygon-based
approach and human guidance, offers a more effective so-
lution for creating high-quality part annotations.

6. Conclusion

In this paper, we introduce SegBuilder, a semi-automatic
pixel-level annotation tool. By leveraging the remarkable
zero-shot capabilities of the vision foundation model SAM,
SegBuilder creates useful segments that annotators can fur-
ther tag using a drop-down list. We demonstrated the effec-
tiveness of SegBuilder for general semantic segmentation
tasks on a novel dataset introduced in this paper. Addition-
ally, we showed that SegBuilder provides complementary
benefits in situations where SAM fails to obtain reasonable
segments. SegBuilder includes a free-form drawing tool
that allows users to create the correct segments missed by
SAM. This capability is particularly useful in scenes with
shadows or camouflaged objects and for part-based segmen-
tation tasks. We have publicly released our tool for use by
the research community.
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