
Programming-Integrated Mathematics Learning for Future
Elementary Teachers and Non-STEMMajors

Hyejin Park
hyejin.park@drake.edu

Drake University
Des Moines, Iowa, USA

Eric D. Manley
eric.manley@drake.edu

Drake University
Des Moines, Iowa, USA

ABSTRACT
With the rising emphasis on computer science (CS) education, many
states, school districts, and schools have grappled with how to ad-
dress computing in the K-12 curriculum. While some approaches
dedicate classroom time to specific CS topics, others are attempt-
ing to infuse computing curriculum into other subjects like math
and science. Preparing educators without prior CS experience to
teach this integrated content is challenging. In this paper, we share
programming-integrated mathematics learning (PML) modules that
we developed to support teachers in learning to use programming
in mathematics classrooms through argumentation. To test the
effectiveness of the modules, we implemented them in a mathemat-
ics content course for elementary education majors and a mathe-
matics pathway course for non-STEM majors. We assessed both
courses as study contexts for evaluating potential PML modules
to enhance teachers’ knowledge and students’ learning outcomes
in mathematics and computer programming. This paper focuses
on student-written reflections as data to investigate how education
and non-STEM majors describe their learning through the PML
modules. According to our analysis, the study participants found
the PML modules to be useful in enhancing their understanding of
mathematical concepts. They also described the value of learning
programming in mathematics classrooms through argumentation,
learning different perspectives, and helping each other understand.
However, most of our student participants displayed a relatively low
level of confidence in their programming abilities, specifically re-
garding the creation of text-based programs. Future study is needed
to explore how to increase the programming self-efficacy while
students learn mathematics through programming.

CCS CONCEPTS
• Applied computing → Collaborative learning; Interactive
learning environments; • Social and professional topics →
Computing education; • General and reference → Design; •
Human-centered computing→ Empirical studies in collaborative
and social computing.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCSE 2024, March 20–23, 2024, Portland, OR, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0423-9/24/03. . . $15.00
https://doi.org/10.1145/3626252.3630908

KEYWORDS
Mathematics and Programming Integration, Teacher Education,
Collaborative Programming, Collective Argumentation

ACM Reference Format:
Hyejin Park and Eric D. Manley. 2024. Programming-Integrated Mathe-
matics Learning for Future Elementary Teachers and Non-STEM Majors.
In Proceedings of the 55th ACM Technical Symposium on Computer Science
Education V. 1 (SIGCSE 2024), March 20–23, 2024, Portland, OR, USA. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/3626252.3630908

1 INTRODUCTION
According to a 2022 State of Computer Science Education report,
43 states are in the process of developing or adopting computer
science (CS) standards for K-12 classrooms [8]. This momentum un-
derscores a collective endeavor to diversify and fortify STEM career
pipelines. However, many schools find it taxing to allocate dedi-
cated CS resources or expertise. This is exacerbated in many rural
areas, which typically lag behind in access to CS and technology ed-
ucation [16]. Thus, the integration of CS into other STEM subjects,
such as mathematics or science, is a popular solution but still brings
its own challenges. Many elementary teachers themselves have not
been exposed to CS much in their teacher education programs [22],
and professional learning opportunities to learn CS that teachers
receive are mostly sporadic [20]. This, combined with potential
apprehensions about their own math or science proficiency, accen-
tuates the challenges. Thus, teacher educators, researchers, and
stakeholders need to consider a better way to support elementary
teachers to help them build robust CS content knowledge and skills
required for CS-integrated teaching. The challenges or barriers
teachers encounter in planning and implementing CS-integrated
classroom lessons are unsurprising outcomes (e.g., [27]).

As teacher educators shaping the next generation of teachers,
it is imperative for us to ensure that future teachers are equipped
to navigate this interdisciplinary terrain. In order to help address
this need, we developed a series of programming-integrated mathe-
matics learning (PML) modules intended to simultaneously address
fundamental concepts in CS and mathematics so teachers can expe-
rience CS-and-mathematics-integrated learning. Our goal for this
paper is to assess the effectiveness of the PML modules through
their impact on the learning of prospective teachers. To achieve this
objective, we implemented the modules in a mathematics content
course designed for elementary education majors. Moreover, we
also implemented a subset of the activities in a math pathways
course – a general mathematics course for non-STEM majors. The
Math Pathways course provides a comprehensive foundation in

https://doi.org/10.1145/3626252.3630908
https://doi.org/10.1145/3626252.3630908

SIGCSE 2024, March 20–23, 2024, Portland, OR, USA Hyejin Park and Eric D. Manley

mathematics for liberal arts and business students. It fulfills uni-
versity requirements and prepares students for college-level math-
ematics. Because this group consists of students with low levels
of math proficiency and little programming experience, if their
response was positive, we believed the modules could also be used
in secondary or post-secondary mathematics classrooms (e.g., de-
velopmental mathematics courses). The subsequent sections will
review related works, outline questions guiding our examinations
of the effectiveness of the modules, discuss our methods for the
module evaluations and results from our analysis, and conclude
with potential implications and directions for future exploration.

2 RELATED LITERATURE AND CONCEPTUAL
FRAMING FOR MODULE DESIGN

Programming is a core component of CS practice, and it has already
been integrated into mathematics classrooms and mathematics cur-
ricula across many countries to foster students’ problem-solving
skills and logical thinking [3]. Prior studies examining the benefits
of incorporating programming into mathematics classrooms show
that programming can help increase students’ interest in mathe-
matics, enhance their mathematical performance and reasoning
skills, and help students connect mathematics to real-world situa-
tions [1]. For instance, Rodríguez-Martínez et al. (2020) performed
a controlled study in which two groups of 6th-grade students were
trained in basic Scratch (block-based programming) and then given
a mathematical task (word problems containing computation of
least common multiples and greatest common divisors) [28]. One
group used Scratch to complete the mathematical task, and the
other used traditional pencil-and-paper approaches. Proficiency in
the mathematical task was higher among the Scratch group, leading
to the conclusion that it is reasonable to integrate mathematical
and computational curricula.

According to Falkner et al.. unplugged, block-based, and text-
based programming is being used at all age levels by K-12 schoolteach-
ers [11]. For ages 3-12, block-based programming is more common
than text-based programming, and the split is about equal from
ages 13-19. Teachers participating in Falkner et al.’s study described
various factors that influenced the selection of the programming en-
vironment, with curricular demand being fairly low, developmental
appropriateness being high, and teacher confidence somewhere in
the middle. Other studies show that since most elementary teach-
ers have no or little CS learning and teaching experience, they
lack CS content knowledge and do not feel confident in integrat-
ing programming into mathematics classrooms [30, 31]. Although
professional learning courses or workshops have been offered to
teachers to support their learning of CS, teachers appealed that
they need more practice, support, and resources that can help them
integrate CS into other subject classroom.We believe that providing
CS learning opportunities during mathematics education course-
work in a teacher education program can help teachers be equipped
with both CS and mathematics content knowledge for teaching
before they go out to the field. Pointing out that only a few teacher
education programs are preparing future CS teachers, DeLyser et
al. recommended that schools of education include CS as a part
of teacher preparation programs [9]. Gadanidis et al.’s 2017 study
shows that student apprehension about CS-math integration was

initially high among pre-service teachers but improved with expo-
sure to integrated activities and online resources. They also found
that many pre-service teachers had successfully implemented these
ideas in a practicum setting [13]. So, in this study, we designed PML
modules to have future teachers experience learning mathematics
through programming as learners during their mathematics educa-
tion coursework, hoping to increase their CS content knowledge
and skills and their confidence in the ability to use programming
in doing mathematics and further in teaching mathematics in their
future classrooms. Watson defined self-efficacy to be “confidence
or belief in one’s own abilities to perform an action or activity
necessary to achieve a goal or task” [32] (p. 152). According to prior
studies, even short-term professional learning opportunities can
improve teachers’ confidence in programming [5].

In the PML modules, we used both block-based and text-based
programming. We introduced block-based programming first since
studies show that students with block-based experience performed
better when learning text-based programming [14]. However, when
selecting block-based programming platforms, different platform
characteristics may or may not support students’ transitioning to
text-based programming [19]. Many studies also show that teach-
ers have widely used student collaboration to support students’
learning of programming. In collaborative programming, students
learn from each other by sharing ideas, increasing students’ aca-
demic success [4, 12]. The discourse students engage in while co-
programming can support students’ learning better than working
alone. In our PML modules, most programming activities involved
co-programming. The key feature of our PML module is that we
incorporate argumentation to facilitate students’ collaborative pro-
gramming and discourse in solving PML tasks. Argumentation is
a core mathematical practice that students are expected to learn
in school mathematics [18, 21, 24]. Previous studies have proved
that argumentation helps students construct a conceptual under-
standing of mathematical concepts [29], increase their participation
and engagement [7], develop their mathematical disposition and
intellectual autonomy [33], and enhance their communication skills
[2]. Students tend to make programs using a trial-and-error method
without deliberating why programs work [10]. We believe engaging
students in argumentation while programming could guide them
to focus more on their reasoning and thinking, not relying much
on trials. Trial-and-error methods may help to make a conjecture,
but then students should be able to prove why something is true
or valid for their understanding. This is a crucial practice students
should learn both in mathematics and programming.

The following questions guided our study to examine the effec-
tiveness of the PML modules on student learning:
Q1: How do education and non-STEM majors describe their learn-
ing mathematics and programming through the PML modules?
Q2: What conceptions do education and non-STEM majors pos-
sess about programming in learning mathematics through PML
modules?
Q3:What conceptions do education and non-STEM majors possess
about collective argumentation in learning mathematics through
PML modules?
Q4: How do education and non-STEM majors describe their con-
fidence level concerning programming after completing the PML
modules?

Programming-Integrated Mathematics Learning for Future Elementary Teachers and Non-STEM Majors SIGCSE 2024, March 20–23, 2024, Portland, OR, USA

Q5:What are education and non-STEM majors’ programming pref-
erences between block-based and text-based programming after
they complete the PML modules? Why do they prefer to use one
over the other in learning mathematics?

3 LEARNING MODULE DEVELOPMENT AND
IMPLEMENTATION

This section describes the development and implementation of our
PML modules and the data we used to examine their effectiveness.

3.1 PML Modules and Study Contexts
In the 2023 spring semester, we designed a series of PML modules
focusing on argumentation to support teacher knowledge devel-
opment about mathematics and programming. The mathematics
content concentrates on fundamental topics in geometry and prob-
ability addressed in school mathematics. To assist teachers’ pro-
gramming learning, we created PML tasks and activities using both
block-based and text-based programming. During these activities,
students were asked to analyze and interpret programs and then
design or revise existing programs to create new ones. The activities
were devised this way with the consideration that participants may
lack prior programming experience. More specifically, activities
with block-based programming (e.g., EdScratch and Scratch) had
learners explore characteristics of geometrical shapes (e.g., trian-
gles) and program physical and virtual robots to draw shapes. Each
learner had one physical robot (Edison robot) to program and run
during in-class activities. We utilized Park et al.’s [25] four geometry
learning tasks that combine programming and robotics, designed
for teachers to use in mathematics classrooms for all grade levels.
We also created a programming-based geometry learning task using
Scratch to encourage students to explore further with block-based
programming. During the activities, students created programs
using both EdScratch and Scratch, and they compared the similar-
ities and differences between the two languages. Activities with
text-based programming allowed learners to explore experimental
probabilities using programming and to connect experimental and
theoretical probabilities. We also designed these PML modules to
be centering around argumentation to have students focus on rea-
soning in programming and problem-solving rather than simply
relying on the trial-and-error method to figure out problems.

Our modules consist of in-class group-work-based PML tasks
and activities, individual and group assignments created to assess
knowledge development about mathematics and programming, and
written reflection assignments asking learners to reflect on their
learning through the PML modules (see Table 1 for the snapshot of
the modules). We devised mathematics and programming content
knowledge assessments and written reflection prompts after learn-
ers completed in-class group work activities. We did so to consider
their reactions to our PML modules in our learning module design
and development processes. In all, programming concepts covered
included variables, operations, conditionals, loops, and functions.

We implemented the PML modules in two different learning
contexts to explore perceptions of learning mathematics through
programming from two different groups of populations. To assess
the impact of the modules on future teachers, we implemented the

modules in a mathematics content course for elementary educa-
tion majors. Moreover, to further evaluate the learning modules’
effectiveness in settings with novice math/CS learners, we also im-
plemented a subset of the activities in a math pathways course – a
general mathematics course for non-STEM majors. The first author
of this paper was the instructor of these two courses. She taught
one section of the mathematics content course and two sections
of the math pathways course. During our weekly research meet-
ings throughout the semester, we discussed students’ reactions to
the PML tasks and activities in class. We then created and revised
mathematics and programming content knowledge assessments
and written reflection prompts considering students’ mathematics
and programming knowledge levels and our research interests.

3.2 Student Backgrounds
We analyzed written reflections that were submitted by participants
of our study. The participants were a group of four elementary edu-
cation majors who were enrolled in a mathematics content course
designed for K-8 teachers (pseudonyms: Blake, Jenna, Kerry, and
Stacy), and seven non-STEM majors who were taking a mathe-
matics pathways course (pseudonyms: Aiden, Casey, Riley, Emery,
Idris, Jordan, Liam). We selected these participants because they
had completed all the reflections that we had requested them to
submit. While taking the pathways course, Jordan was a freshman.
Casey, Riley, Aiden, Liam were seniors. All education majors were
sophomores. These students voluntarily participated in the study
and completed all four written reflection assignments. Among these
student participants, eight reported they had no programming ex-
perience before taking the course. Jenna and Jordan remembered
some programming activities they had participated in when they
were either middle or high school students. Aiden was the only one
who expressed familiarity with programming.

3.3 Analysis of Student Reflections
When interpreting students written responses, we drew on a situa-
tive perspective [26] to help us understand their responses in the
contexts they were situated in. For instance, education majors in
our study were asked to situate themselves as elementary teachers
and describe their views on the use of programming in mathematics
classrooms focusing on argumentation as teachers. We also asked
them to reflect on their learning through the PML module as learn-
ers. So, when interpreting their responses, we were careful whether
they elaborated their views from a learner’s or a teacher’s view.

To code student-written reflections, we used thematic analy-
sis [6]. We coded each reflection, paying attention to the parts
where each participant provided their views on programming and
collective argumentation, their rates on their confidence levels re-
garding programming, their comments on the PML modules, and
their programming preferences in learning mathematics. We began
coding education majors’ responses from Module 1 Reflection 1,
then moved to coding their responses from Module 1 Reflection 2,
Module 2 Reflection 1, and Module 2 Reflection 2. We carefully read
student responses and created codes using the constant comparison
technique. When coding non-STEM majors’ responses, we used
the codes we came up with from the analysis of education majors’

SIGCSE 2024, March 20–23, 2024, Portland, OR, USA Hyejin Park and Eric D. Manley

Module 1 Module 2
In-class activities

• Introduction and discussion about mathematical
argumentation

• Investigations of definitions, properties, and
examples of polygons

• Mini-lesson on robotics and programming
• PML activities: Triangle explorations and
constructions using block-based programming
(EdScratch) and Edison robots.

Example Activity: The following program is for Edison
to draw a shape:

What shape do you think the program is going to tell
Edison to draw? Explain your thinking.
Using a ruler and protractor, draw the shape Edison
would make on the provided paper.
Now, let’s program and run your Edison. Make a
program like the program above in EdScratch
(https://www.edscratchapp.com/) and program your
Edison to see what shape Edison is drawing. Is it
moving as you expected?

• Introduction to Probability
• PML activities: Explorations of experimental
probabilities using text-based programming
(Python); Explorations of a relationship between
experimental and theoretical probabilities

Example Activity: Examine each line of code in the
program and write an argument in the given box below
that describes your interpretations of the program.
How did you interpret each line of code?

Now run the program and see whether it is running as
you expected.
Run the program more than 10 times. What did you
notice when you ran the program? Write down
whether your interpretations were correct based on
your observations.

Individual
Assignment

Analysis and evaluation of an already designed
EdScratch block-based program to determine why or
why not this program would work for drawing a kite

Revision of a text-based program used in class to
perform another experiment with dice to find the
experimental probability of getting an even number as
the sum when throwing two dice simultaneously.

Reflection 1 Both Education and Non-STEM Majors: Written
reflections about their geometry learning through the
PML activities using block-based programming and
their views of programming and proving

Education Majors Only: Written reflections about their
views of learning and teaching mathematics using
programming, their confidence level in teaching
block-based programming, additional support they
need to use programming in their future mathematics
classrooms

Both Education and Non-STEM Majors: Written
reflections about their learning experience with
text-based programming during their school education,
their probability learning through the PML activities
using text-based programming, their comfort and
confidence level of using block-based and text-based
programming to design programs, and their views on
the relationship between programming and proving

Education Majors Only: Written reflections about their
views of learning and teaching mathematics using
programming, their confidence level in teaching
text-based programming, their preference between
block-based and text-based programming

Group Assignment Hexagon explorations and constructions using
Block-based programming (Scratch) and virtual robots.

Analysis and evaluation of a text-based program to
determine what problem a programmer attempted to
solve by running the program.

Reflection 2 Written reflections about their learning experience
through argumentation

Written reflections about their collaborative
programming experience through argumentation, and
their views on the benefits of learning mathematics
and programming through collective argumentation

Table 1: PML Modules Implemented in Education and Math Pathways Courses

Programming-Integrated Mathematics Learning for Future Elementary Teachers and Non-STEM Majors SIGCSE 2024, March 20–23, 2024, Portland, OR, USA

written responses, opening up new codes from their responses. Af-
ter coding all participants’ written reflections, we collated all the
codes, identified themes that emerged from participants’ responses,
and wrote memos about how each group of students, education and
non-STEM majors, described their learning through the PML mod-
ules and their views on programming and learning mathematics
through programming focusing on argumentation.

4 RESULTS
In this section, we illustrate the results of our analysis by answering
each question to discuss the effectiveness of the PML modules.

4.1 Q1: Reinforcement of Math Concepts
Most students evaluated that the PML activities helped develop
their understanding of mathematical concepts. For instance, ten of
the eleven students mentioned that block-based programming ac-
tivities, the first PMLmodule they were engaged in at the beginning
of the semester, positively affected their learning of the geometry
concepts. Kerry discussed how she had previously learned the prop-
erties of triangles, but that by programming the robot (virtually or
physically) during PML activities, she found out why it worked, in-
creasing her understanding of triangle shapes and allowing herself
to develop better warrants for her claims (Module 1 Reflection 1).
Some of the reasons for this improved mathematical understanding
included that programming offers visualization in its process and
provides a mechanism for trial and error. Casey notes that “It was
nice to be able to see what happens when you change the angles
and the sides of different shapes. . . I learned a lot from these robots
also because I am a visual learner ” (Module 1 Reflection 1) and
Kerry further elaborated that programming “allows for trial and
error, which in turn explains why something may/may not work”
(Module 1 Reflections 1). However, one student conceded that the
block-based programming activities improved her understanding
but may not have been optimal because of struggles in learning
programming itself (Stacy, Module 1 Reflections 1).

Similarly, students largely (9 of 11) thought that the inclusion of
text-based programming activities, which were the second part of
the PML module, helped their understanding of probabilities. The
theme of visualization continued in these responses, with four stu-
dents saying something about it, which is interesting because these
text-based programming activities were much less visual. Casey
noted that “Text-based programming helps me with math because
I am able to visualize what I’m thinking in my head which is very
helpful” (Module 2 Reflection 1), and Aiden mentioned that “It al-
lowed me to visualize an input and an output” (Module 2 Reflection
1). Students saw that the text-based program provides a means of
“visually” expressing an idea and that the program output served as
examples reinforcing the content. Emery and Casey commented on
the utility of being able to quickly test hypotheses (their claims): “It
saved a lot of time and made finding answers a lot simpler” (Emery,
Module 2 Reflection 1) and “I was able to calculate things on a
larger scale than I could just do in my own head.” (Casey, Module 2
Reflection 1). Kerry also discussed that solving the programming
tasks required her to think through the details of the mathematics
much more deeply in order to get the desired output in the program.

4.2 Q2: Conceptions of Programming
Our study participants had similar conceptions about programming.
All students, except Liam, described programming as a set of in-
structions to a computer or a robot to achieve the goal of a task.
For instance, Casey explained, “Programming is when you type in
problems and try to get an answer out of it. It’s like you are giving
computer instructions to see what it will do with it” (Module 1
Reflections 1). Unlike other students, when asked to define what
programming is, Liam instead focused on types of reasoning or
mathematics knowledge needed for programming.

In describing their views on programming, nine students men-
tioned that proving and programming were similar since both re-
quire problem-solving, validation, and justification. The other two
students had different thoughts; e.g., Jordan thought that proving
and programming were not similar because “proving processes is
used to see if something is true through proofs or not while [the]
programming process is used to see if something is true through
trials” (Jordan, Module 2 Reflection 1). For Jordan, programming
needs trial-and-error for verification; proving does not.

When asked to think about the use of programming in their
future classrooms (we asked this question only to education ma-
jors), from a teacher’s perspective, Kelly saw programming as an
assessment tool that can support teachers in evaluating student
understanding of mathematical concepts (Module 1 Reflections 1).
The other three students perceived programming as a learning tool,
addressing that programming could be used to help students de-
velop mathematical understanding. Jenna commented, “I think it is
[a] helpful way to further students’ understanding of mathematical
terms because students will be able to type out their own mathe-
matical program and then watch their program play out and if it
works or doesn’t work” (Module 2 Reflection 1).

4.3 Q3: Conceptions of Collective
Argumentation

Most students (9 out of 11) defined collective argumentation as the
process of a group of people making arguments. Some students
specified that it is a process of convincing themselves or others
about why something is correct. For example, Idris defined collec-
tive argumentation in the following way: “I would define collective
argumentation as the process of a group of people working to-
gether on a problem and sharing their thoughts and working before
coming to a group consensus on what the answer is” (Module 2
Reflection 1). When asked to describe their thoughts on the benefits
of learning mathematics and programming through collective argu-
mentation, based on their experience working with peers/groups
through argumentation during the PML activities, many students
responded that in argumentation, they could share ideas so they
can learn different perspectives or thinking, and they also help each
other to understand. Blake stated, “The benefits of learning mathe-
matics and programming through collective argumentation are that
if we don’t understand something about how to solve a problem
or how to provide proof, then we can ask our partners how they
understand the problems for other perspectives and reasonings”
(Module 2 Reflection 2). One student, Liam, added other benefits,
addressing that argumentation can help enhance communication

SIGCSE 2024, March 20–23, 2024, Portland, OR, USA Hyejin Park and Eric D. Manley

skills and gain a deeper understanding of concepts discussed in
class.

4.4 Q4: Confidence Level
After completing the PML activities at the end of the semester,
students were asked to rate their confidence in their ability to
create text-based programs on a scale of 0-3, representing (0) not
at all confident, (1) minimally confident, (2) quite confident, and
(3) I can do it effectively. Five students rated themselves as 1, four
rated themselves a 2, and the other two rated themselves between
a 1 and a 2. As expected with beginning programmers, the students
felt much more confident working with sample code and less so
creating an entirely new program by themselves. Kerry summarizes
this feeling by saying, “I am pretty good at manipulating existing
programs to reflect new sequences or probabilities but do struggle
on creating them from scratch” (Module 2 Reflection 1).

When the education majors were asked to elaborate on their
confidence in teaching block-based and text-based programming,
they were much more confident in their ability to teach block-based.
They also mentioned they were more confident making or using
block-based programs than text-based ones. For teaching block-
based programming, with the same scale of 0-3 described above, one
student rated themselves a 1, and the other three rated themselves
as a 2. For teaching text-based programming, one student rated
themselves a 1, one rated themselves a 2, and the others were
unsure. For teaching purposes, the education majors felt the need
for more practice with programming as well as resources with
pre-written example programs for teaching mathematics through
programming. When reflecting on the support she would need to
teach programming in her future mathematics classroom, Jenna
said, “I just believe that overall, I need more practice. More practice
with the designing a code and revising if it goes wrong” (Module
2 Reflection 1). And Kerry noted, “I like that if I had pre-existing
programs, I could use those to support my students with their
learning about text-based programming, but I am not sure if I
have the proper knowledge needed to explain how to create the
programming or how it works in computing the results” (Module 2
Reflection 1).

4.5 Q5: Programming Preferences
When asked about their preferences between block-based and text-
based programming, we noticed a difference between the education
majors and students in the general math course. The general math
group (non-STEMmajors) was evenly split (with 3 preferring block-
based, 3 preferring text-based, and 1with no preference). In contrast,
all education majors preferred block-based programming. Each of
the education majors reflected on this through the lens of what
they might use in a future mathematics classroom, and since they
perceived block-based programming as more appropriate in an
elementary education setting, that was their preference. Blake said,
“I found that Scratch [block-based programming] was a lot more
simple to use, and I figured that out very fast and felt [elementary]
students would be able to. It is very interactive and has lots of
different options as well as a cat to draw out what you are doing,
which is a fun interactive tool for them” (Module 2 Reflection 1).
This idea of being able to select from different options also appealed

to the general math students. Aiden noted, “I think block-based
could be easier because there are options, and text-based, I feel
like I just make something up” (Module 2 Reflection 1). However,
some of the general math students found the text-based Python
code easier to interpret: “I think I would prefer text-based simply
for the fact that it is spelled out for you to understand. With block
programming, sometimes you had to guess what it was used for or
what it’s purpose was” (Emery, Module 2 Reflection 1).

5 CONCLUSIONS AND FUTURE DIRECTIONS
In this paper, we shared our experiences through the analysis of
student-written reflections. Overall, both groups of students, ed-
ucation and non-STEM majors, evaluated that the PML modules
helped them improve their understanding of mathematical con-
cepts. They also constructed similar views on the benefits of using
programming and argumentation in learning mathematics. We
also observed that the PML modules fostered education majors to
increase self-efficacy in teaching block-based programming. The
programming choice that they wanted to use in teaching mathemat-
ics was block-based, which aligns with their confidence levels in
their ability to use and teach block-based programming. In contrast,
their confidence levels in teaching text-based programming were
minimal, aligning with their confidence levels in creating text-based
programs. Non-stem majors were also not confident in their ability
to produce text-based programs. Our results are similar to Kahle’s
2008 study, which shows a strong relationship among teachers’
mathematics self-efficacy, mathematics teaching self-efficacy, and
teaching method choices [17]. Although our study participant sam-
ple size was not big enough to generalize, our results still give us
insight into the importance of developing teachers’ self-efficacy
and teaching self-efficacy about programming since these can affect
teachers’ teaching practices. When supporting teachers in learning
to integrate programming in mathematics classrooms, we need to
think about ways to improve teachers’ self-efficacy and teaching
self-efficacy about programming in addition to their mathemat-
ics self-efficacy and mathematics teaching self-efficacy. Research
also shows a strong relationship between students’ mathematics
self-efficacy and mathematical performance (e.g., [15, 23]). Future
studies are needed to explore how we can support students and
(future) teachers to increase self-efficacy about programming in
CS-and-mathematics-integrated learning contexts.

REFERENCES
[1] Louis Alfieri, Ross Higashi, Robin Shoop, and Christian D Schunn. 2015. Case

studies of a robot-based game to shape interests and hone proportional reasoning
skills. International Journal of STEM Education 2, 1 (2015), 1–13.

[2] J ANDRIESSEN. 2006. Arguing to learn. Cambridge handbook of the learning
sciences (2006), 443–459.

[3] Anja Balanskat and Katja Engelhardt. 2014. Computing our future: Computer
programming and coding-Priorities, school curricula and initiatives across Europe.
European Schoolnet.

[4] Moshe Barak and Muhammad Assal. 2018. Robotics and STEM learning: students’
achievements in assignments according to the P3 Task Taxonomy—practice,
problem solving, and projects. International Journal of Technology and Design
Education 28 (2018), 121–144.

[5] Marina Bers, Safoura Seddighin, and Amanda Sullivan. 2013. Ready for robotics:
Bringing together the T and E of STEM in early childhood teacher education.
Journal of Technology and Teacher Education 21, 3 (2013), 355–377.

[6] Virginia Braun and Victoria Clarke. 2012. Thematic analysis. American Psycho-
logical Association.

Programming-Integrated Mathematics Learning for Future Elementary Teachers and Non-STEM Majors SIGCSE 2024, March 20–23, 2024, Portland, OR, USA

[7] Marta Civil and Roberta Hunter. 2015. Participation of non-dominant students
in argumentation in the mathematics classroom. Intercultural Education 26, 4
(2015), 296–312.

[8] Code.org, CSTA, and ECEP Alliance. 2022. 2022 State of computer sci-
ence education: Understanding our national imperative. Retrieved from
https://advocacy.code.org/stateofcs.

[9] Leigh Ann DeLyser, Joanna Goode, Mark Guzdial, Yasmin Kafai, and Aman Yadav.
2018. Priming the computer science teacher pump: Integrating computer science
education into schools of education. CSforAll, New York, NY (2018).

[10] Stephen H Edwards. 2004. Using software testing to move students from trial-
and-error to reflection-in-action. In Proceedings of the 35th SIGCSE technical
symposium on Computer science education. 26–30.

[11] Katrina Falkner, Sue Sentance, Rebecca Vivian, Sarah Barksdale, Leonard Busuttil,
Elizabeth Cole, Christine Liebe, Francesco Maiorana, Monica MMcGill, and Keith
Quille. 2019. An international comparison of k-12 computer science education
intended and enacted curricula. In Proceedings of the 19th Koli calling international
conference on computing education research. 1–10.

[12] Garry Falloon. 2016. An analysis of young students’ thinking when completing
basic coding tasks using Scratch Jnr. On the iPad. Journal of Computer Assisted
Learning 32, 6 (2016), 576–593.

[13] George Gadanidis, Rosa Cendros, Lisa Floyd, and Immaculate Namukasa. 2017.
Computational thinking in mathematics teacher education. Contemporary Issues
in Technology and Teacher Education 17, 4 (2017), 458–477.

[14] Marcos J Gomez, Marco Moresi, and Luciana Benotti. 2019. Text-based program-
ming in elementary school: a comparative study of programming abilities in
children with and without block-based experience. In Proceedings of the 2019
ACM Conference on Innovation and Technology in Computer Science Education.
402–408.

[15] Gail Hackett and Nancy E Betz. 1989. An exploration of the mathematics self-
efficacy/mathematics performance correspondence. Journal for research in Math-
ematics Education 20, 3 (1989), 261–273.

[16] Google Inc. and Gallup Inc. 2017. Computer Science Learning: Closing the Gap:
Rural and Small Town School Districts. Retrieved from https://goo.gl/hYxqCr.
Results From the 2015-2016 Google-Gallup Study of Computer Science in U.S. K-12
Schools (Issue Brief No. 4) (August 2017).

[17] Diane Kay Kahle. 2008. How elementary school teachers mathematical self-efficacy
and mathematics teaching self-efficacy relate to conceptually and procedurally
oriented teaching practices. Ph. D. Dissertation. The Ohio State University.

[18] Steve Leinwand. 2014. Principles to actions: Ensuring mathematical success for all.
National Council of Teachers of Mathematics, Incorporated.

[19] Yuhan Lin andDavidWeintrop. 2021. The landscape of Block-based programming:
Characteristics of block-based environments and how they support the transition

to text-based programming. Journal of Computer Languages 67 (2021), 101075.
[20] Muhsin Menekse. 2015. Computer science teacher professional development in

the United States: a review of studies published between 2004 and 2014. Computer
Science Education 25, 4 (2015), 325–350.

[21] National Governors Assocation Center for Best Practices & Council of Chief
State School Officers. 2010. Common Core State Standards for Mathematics.
https://learning.ccsso.org/wp-content/uploads/2022/11/Math_Standards1.pdf

[22] Wing Shui Ng. 2017. Coding education for kids: What to learn? How to prepare
teachers. Proceedings of ICICTE (2017), 195–205.

[23] Maria Nicolaidou and George Philippou. 2003. Attitudes towards mathematics,
self-efficacy and achievement in problem solving. European research in mathe-
matics education III 1, 11 (2003).

[24] National Council of Teachers of Mathematics. 2000. Principles and standards
for school mathematics. Reston, VA: National Council of Teachers of Mathematics
(2000).

[25] Hyejin Park, Tuğba Boz, Amanda Sawyer, and James CWillingham. 2023. Triangle
explorations and constructions using robots. Mathematics Teacher: Learning and
Teaching PK-12 116, 5 (2023), 392–398.

[26] Dominic Peressini, Hilda Borko, Lew Romagnano, Eric Knuth, and Christine
Willis. 2004. A conceptual framework for learning to teach secondary mathe-
matics: A situative perspective. Educational Studies in Mathematics 56 (2004),
67–96.

[27] Kathryn M Rich, Aman Yadav, and Christina V Schwarz. 2019. Computational
thinking, mathematics, and science: Elementary teachers’ perspectives on inte-
gration. Journal of Technology and Teacher Education 27, 2 (2019), 165–205.

[28] José Antonio Rodríguez-Martínez, José Antonio González-Calero, and
José Manuel Sáez-López. 2020. Computational thinking and mathematics
using Scratch: an experiment with sixth-grade students. Interactive Learning
Environments 28, 3 (2020), 316–327.

[29] Megan Staples and Jill Newton. 2016. Teachers’ contextualization of argumenta-
tion in the mathematics classroom. Theory into Practice 55, 4 (2016), 294–301.

[30] Henrik Stigberg and Susanne Stigberg. 2020. Teaching programming and mathe-
matics in practice: A case study from a Swedish primary school. Policy futures in
education 18, 4 (2020), 483–496.

[31] Peter Vinnervik. 2022. Implementing programming in school mathematics and
technology: teachers’ intrinsic and extrinsic challenges. International journal of
technology and design education 32, 1 (2022), 213–242.

[32] George Watson. 2006. Technology professional development: Long-term effects
on teacher self-efficacy. Journal of Technology and Teacher Education 14, 1 (2006),
151–166.

[33] Erna Yackel and Paul Cobb. 1996. Sociomathematical norms, argumentation, and
autonomy in mathematics. Journal for research in mathematics education 27, 4
(1996), 458–477.

https://learning.ccsso.org/wp-content/uploads/2022/11/Math_Standards1.pdf

	Abstract
	1 Introduction
	2 Related Literature and Conceptual Framing for Module Design
	3 Learning Module Development and Implementation
	3.1 PML Modules and Study Contexts
	3.2 Student Backgrounds
	3.3 Analysis of Student Reflections

	4 Results
	4.1 Q1: Reinforcement of Math Concepts
	4.2 Q2: Conceptions of Programming
	4.3 Q3: Conceptions of Collective Argumentation
	4.4 Q4: Confidence Level
	4.5 Q5: Programming Preferences

	5 Conclusions and Future Directions
	References

