
Blythe Kelly, Jaehyeok Choi, Dr. Eric Manley

Serverless Dashboard for Bank Call Report Data Exploration

ABSTRACT
The Economics Data Science Research Group’s goal is to use machine learning
techniques to learn from previous data, so future bank failures can be predicted.
But in order for this goal to be achieved, it’s crucial for the data to be clean,
organized and easily accessible.

Currently, the data has been cleaned and organized in our structured database in
AWS. With the bank failure web API that our team has created, the data is easily
accessible with simple HTTP requests to designated endpoints to query the
desired data.

However, although the data is now clean, organized, and easily accessible, it is
hard for us to truly understand the data in bulk JSON format that the API returns
via HTTP requests. Since our data also contains the data from different time
periods, it is crucial to recognize the changes in data as time progresses.

With this dashboard, users now can select the specific bank and the audit and the
graph of the audit score over the time periods will be displayed. Now it is easy to
spot the change in data over time with visualization.

This dashboard is currently available at

https://7a2sgjfva5.execute-api.us-east-2.amazonaws.com/dev

Or via the QR code =>

DASHBOARD
LOGIC

FUTURE
Solve the issue with cold start related to serverless architecture

Display multiple graphs on same page
Optimization on rendering performance

BULK FORMAT WITH API

ACKNOWLEDGEMENTS
Dr. Eric Manley & Dr. Sean Severe, Drake CS 66 & 67

https://stackoverflow.com/questions/66845303/deploying-a-plotly-dash-app-to-
aws-using-serverless-framework

ssh -i "jaethem8-server.pem" ec2-user@ec2-18-191-134-148.us-east-2.compute.amazonaws.comDEPLOYMENT

● This dashboard is a user interface that helps visualize the
financial health and income of each bank through a
myriad of indicators. The indicators consist of individual
and combinations of measures for risk profiles,
capital, and assets.

● The dashboard uses a Dash app embedded in a
Flask server to display longitudinal Federal Financial
Institutions Examination Council (FFIEC) data from
their Call Reports, which include indicators of the
financial health of each bank.

● On the dashboard, there are two dropdowns that pass
data into the Dash callback function.
○ The first dropdown lists all of the Regulatory Capital Components and Ratios schedule (RCFA) codes

that can be individually selected by the user.
○ The RCFA codes are enriched with their meaning through correlating data from the data_dict table in

the API.
○ The second dropdown displays the available bank IDs for the selected RCFA code. It is dependent on

the first dropdown to avoid errors when a certain bank ID did not report on the specified criteria.

● The data is reported quarterly, and information for the quarter and year is converted into the date used in
the graph through the Python function named update_year .

● The Plotly graph illustrates the trends based on the RCFA and bank code chosen.

Dashboard

REQUEST

JSON

Queries

DataAPI

API Database

- The most common way to deploy a Python
Dash application is by following the traditional
pattern. This could mean opening up an EC2
instance, and set up the environment, handling
the dependencies, and using gunicorn or other
tools to run the application.

- Docker could be used to simplify the process
of setting up the environment within the virtual
machine and running the application in a
containerized environment.

- Both approach that is presented above runs in
a traditional server, where the application will
be running 24/7, which would increase the cost
of the server.

- Goal of this part is to run this application
following the serverless architecture

- Serverless framework was used to decrease
the deployment process complexity. The
specifications are recorded in serverless.yml

- To simplify the process for the students to
develop Dash application in serverless manner,
the template was created

- https://github.com/Jaethem8y/dash-
serverless-template

- For future students, who need to create their
own application and want to deploy it on
serverless.

- The pros of serverless architecture were
obvious as it decreases the total cost of the
server, and it is only getting billed as it is used
and does not run consistently 24/7.

- The problem was detected as both API and the
Dash application are running in serverless
architecture; the initial cold start delay
significantly decreased the load time of the
application when it is first used by the user.
Although the requests after had satisfactory
performances, the delay in loads of UI
components and data load was significant.

https://7a2sgjfva5.execute-api.us-east-2.amazonaws.com/dev
https://stackoverflow.com/questions/66845303/deploying-a-plotly-dash-app-to-aws-using-serverless-framework
https://stackoverflow.com/questions/66845303/deploying-a-plotly-dash-app-to-aws-using-serverless-framework
https://github.com/Jaethem8y/dash-serverless-template
https://github.com/Jaethem8y/dash-serverless-template

