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Results Conclusion

We have compared results and determined « We must consider adding more data to
bank call report to measure statistical that the best model was our Gradient out models in order to gain more signal,
significance by running a simple linear Boosting Regressor resulting in an R? of our testing data is not doing a great job
regression against the next year health 66% N the predictions

column to check what variables might have
more significance predicting our target
variable.

Methodology

We used 553 variables out of the 5000 in the

Abstract

This study aims to develop a machine
earning model that predicts the risk of bank
failure using historical bank call reports data.
More specifically, we attempt to predict the
total equity capital less goodwill as a ratio of
the bank's total assets for the next calendar
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We are building machine learning algorithms to
help isolate these metrics and predict bank
failure risk accurately. The primary objective of
this research is to help banks and investors
understand the variables that lead to bank
failure and to monitor them carefully. We
believe that our study will provide valuable
INsights into the financial industry, which can
help prevent bank failures and promote
economic stability.

Modelling:

» After selecting the 53 variables, we queried
the datalbase and made a data frame with all
those variables for each bank.

\\WVe then made all the variables a ratio of
their Total Assets [1].

» FOor this analysis we have tested our models
using the Scikit — Learn [3! framework:

« Random Forest Regressor: R? = 55%
« Gradient Boosting Regressor: R% = 66 %
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