
Jaehyeok Choi, Jacob Danner, Riley Rongere, Blythe Kelly, Gonzalo Valdenebro, Dr. Eric Manley

Async vs Sync for Non-Computation Heavy Applications

Abstract 

In recent years, the number of web applications that implement 
the asynchronous way of handling requests are increasing. 
Existing tools such as Spring Boot or Django are starting to 
provide options to implement the logic in asynchronous ways.

With the benefit of wasting less time on I/O compared to 
traditional synchronous applications, much of the time, 
asynchronous applications are considered more performant than 
the synchronous applications

Considering these benefits that asynchronous programming 
provides, it would be logical for new projects or applications to 
be architected in an asynchronous manner. But what about the 
existing applications that are designed to be synchronous? 
Sometimes converting a project from synchronous to 
asynchronous can be time and resource consuming.

If it is possible for an application to have minimal tasks, where it 
takes minimal time to complete, therefore the blocking caused 
by synchronous programming is almost non-existent in real life, 
wouldn’t it make more sense to keep the synchronous way of 
programming if performance difference is minimal?

Consider the BankAPI application. It is a simple application, 
with core functionality of retrieving data from the database and 
returning JSON value. It was originally built as an synchronous 
application, but thanks to aiomysql and FastAPI, we converted it 
to N asynchronous application.

Because this application fits the category of being non-
computation heavy, and both synchronous and asynchronous 
code exists, the load test that simulates intensive web requests 
was timed to compare the performance differences.

With the data gathered from this experiment, it can be 
determined that migrating existing synchronous applications to 
asynchronous applications may often be worth the time.

- Move the test env from local to cloud
- Create a test to check if they operate differently when scaling
- Create a test to see how they behave differently in serverless env

Result

Acknowledgement

- Async architecture was about 10x more 
performant

- Sync application was more prone to internal 
errors with db connections or due to sheer 
amount of request

- Managing the number of pools in database 
connection made a performance difference, 
however, even when sync application maxed 
the pool size, and async application was not, 
async application still outperformed sync 
application 

Test Setup

- The 3 endpoints were specified where each endpoint 
returns 1000 rows from database

- Using the threads, each thread called a method that send 
request to the 5 endpoints synchronously

- For each iteration, the number of threads would increase, 
and the time it took to finish the tasks were measured

- For asynchronous applications, the test was done with 
100, 200, 300, 400, and 500 threads.

- For synchronous applications, the test was done with 10, 
20, and 30 threads due to the server blowing up after.

- The server was started locally, in order to provide the 
same environment but the architecture.

- The spec of the computer that ran the server locally is 
following - 2020 Macbook Pro 13 inch, base model

Resouce used : https://docs.python.org/3/library/threading.html

- Source : https://www.baeldung.com/cs/async-vs-multi-threading

Variables
- Async vs Asynchronous architecture, please 

refer to the diagram above from Baeldung. 
- Management of database pooling -> 

aiomysql vs mysql-connector
- # of database base pool available at the 

given time of test
- Request library provided
- Async request vs sync request
- How to implement the loading of the server: 

threading, futures, or other library
- Usage of the platform or the language that 

will be used to send request to the server

For this specific testing, the db pools were 
maxed at 32 connections, and generic python 
requests library and threads tools were used

Conclusion
- Async performed 10x better than sync 

application in this specific test
- Neither the async nor the sync were 

deployed in any form of server
- Neither of the application used the tools to 

scale as the strain on server increased 
- Spec of the database could have effected as 

sync application needed more connections 
to database at the given time, but the 
database spec was constant. 

- If it truly needs to be async vs sync 
applications, the sync application for the 
clarification or even to better “represent” 
sync application should use WSGI instead 
of ASGI

- This test could be used to show that how 
async applications deals with loads better 
than the sync applications, however, it 
would be a stretch to use the numbers from 
the testing since, although minimalized, the 
other factors mentioned could have affected 
the overall performance.

Test Code with 
both application

Test Code with 
both applicationAPI CODE

Future

- https://aiomysql.readthedocs.io/en/stable/
- https://fastapi.tiangolo.com/
- https://stackoverflow.com/questions/15085348/what-is-the-use-

of-join-in-threading

https://aiomysql.readthedocs.io/en/stable/
https://fastapi.tiangolo.com/
https://stackoverflow.com/questions/15085348/what-is-the-use-of-join-in-threading
https://stackoverflow.com/questions/15085348/what-is-the-use-of-join-in-threading

