
Jaehyoek Choi, Jacob Danner, Dr. Eric Manley*, Dr. Sean Severe*

API and Web App for Bank Failure Database

ABSTRACT
The Economics Data Science Research Group’s goal is to use machine 
learning techniques to learn from previous data, so future bank failures can 
be predicted. But in order for this goal to be achieved, it’s crucial for the data 
to be clean, organized and easily accessible.

Our data is publically available call reports, provided by every bank on a 
quarterly basis. The data is made available in bulk format by the FFIEC 
(Federal Financial Institutions Examination Council). The bulk format is 
extremely difficult to work with. This project includes the work organizing the 
data into an easily queryable relational database. In the database, there are 
over 3,000 tables, each containing data related to different banks at different 
times. In total it is over 50 GB of data. It is available online to economics 
researchers via a web API as well as a web based graphical interface.

Our tools make it possible to easily isolate and merge variables across wide 
time series, enabling data analysis, predictive modeling, and visualization. A 
search tool allows researchers to find variables based on either a description 
or Federal Reserve series and item number. It allows easy programmatic 
access where complex SQL queries are replaced with simple URLs with 
search parameters. The web-app provides a GUI where users can query data 
using a simple input box and button and download the desired data in CSV 
format.

The API layer is written in Python’s fastAPI framework. The UI layer uses 
Javascript’s React library. Hosting was done with AWS services, such as 
EC2, RDS, and S3.

UI LAYER

FUTURE
● Migrate the API into AWS Lambda instead of EC2 to save server cost
● Implement table joins in API layer and web UI layer
● Visualizations for different variables
● Frontend and Backend optimization for performance

BULK FORMAT WITH API

WITH WEB APP DOWNLOADABLE CSV

API LAYER

To search for a specific table, for example - RCFA3792, 
replace the data_dict in url with RCFA3792 and add search 
parameters such as 
http://18.218.236.33:3002/RCFA3792?year=2015&quarter=1

This query returns the following:

DB LAYER
Our database team, organized the bulk txt form of data into a 
relational mysql database. The database is currently hosted in 
AWS RDS service, and it is the backbone of all our work. Each 
variable is represented as a table, and each table has a value 
that changes over time - each quarter of a year. 

For this specific project, the API is built to simplify the query 
process for the database. The web GUI is built using the API 
to make the process even easier.

ACKNOWLEDGEMNETS
Dr. Eric Manley & Dr. Sean Severe - research supervisors, and organized 

AWS RDS database instance

DEPLOYMENT
Without the deployment, the API would not be accessible to 
the public. Our API server is running with an Amazon Web 
Services EC2 instance. Within the instance, there is a docker 
container running that has our API code. 

The API code contains a Dockerfile, which is the basis for 
building the docker image. Once the docker image has been 
created using the Dockerfile, the docker image is run inside of 
the AWS EC2 instance. At this point, it’s ready to take web 
requests. Once a request has been made, the server sends 
SQL queries to the AWS RDS instance holding our database.

For the machine learning team, if they retrieve values using 
HTTP requests in their code and simply store JSON data as 
variables, they can easily create a dataFrame and the data 
would be in great form to train the models.

● When first entered, data_dict table will be displayed to 
show the item_code and its meaning. The data_dict table 
is functioning as the appendix for all the variables in the 
database

● In this case user searched for item_code that includes 
“RCFA” and meaning containing “Total”

USER

REQUEST

JSON

SQL ORM

TABLES
API

EC2

SERVER DATABASE

● Once the user double clicks the item_code from data_dict 
table, the item_code table, a variable from the database, is 
displayed.

● For this specific example RCFA3792 table has been used.
● The user can search each variables within the variables 

using inputs and search button
● In this case, the table displays data that have the value 

year of 2015 and quarter of 1.
● User can click CSV link to download the table in CSV 

format
● Once the user is done, user can click remove button to 

remove the display of the table

UI API

http://18.218.236.33:3002/RCFA3792?year=2015&quarter=1

