
Easy Handwriting Recognition

Eric D. Manley, Timothy Urness
Department of Mathematics and Computer Science

Drake University
Des Moines, IA 50311

{eric.manley,timothy.urness}@drake.edu

Abstract

In this assignment, students create a GUI which allows the user to
draw handwritten digits using a mouse and then attempts to recognize
the character using a CS1-accessible machine learning algorithm. The
assignment can be used to emphasize file input, 2D lists/arrays, and/or
GUIs. The assignment is nifty because it uses real data with a simple
algorithm to achieve compelling results for a familiar application.

1 The GUI

The students create a GUI consisting of a canvas which responds to click-
move mouse events by changing the color of the canvas pixel and capturing
the corresponding entry in a 2D-List of 0s and 1s, a button which runs the
prediction algorithm, and a label to display the algorithm’s guess. The example
GUI in Figure 1 was made using the Python tkinter module, though any GUI
with a similar canvas (and any programming language) will work.

2 The Data

The user’s drawing is compared against a set of handwritten digit samples
from the well-known MNIST database [1], which have been reformatted for
CS1-accessible reading. We converted the data from grayscale to black and
white for easier comparison, reduced the number of samples (from 60000 to
2000), and converted it from binary to a comma separated values (csv) file
where every 29 lines consists of a line with the digit represented and then
28 lines representing the rows in the 28x28 pixel image (see Figure 1). The
resulting data set has an easy-to-understand format, where the handwritten

1



Figure 1: The GUI and Data

characters can be seen visually in the 0s and 1s, and students see immediately
how it should be read in as 2D-lists.

3 The Prediction Algorithm

Students write prediction code as follows:

• Create a function computes a similarity score between the drawing 2D
list and a sample from the data set. You can simply count the number of
pixels that agree or weight some more heavily than others (e.g., 5 points
for black pixel agreement, 1 point for white). As an optional extension,
students can be given the freedom to experiment and define similarity in
any way they choose.

• Loop through each of the samples in the data set, compute the similarity
between that sample and the drawing, and keep track of the sample with
the best similarity score. The digit corresponding to the best similarity
score is then displayed as the prediction.

This algorithm is a variant of the K-nearest-neighbor (KNN) machine learning
algorithm with k = 1 and a custom similarity function. Other variations of
KNN are known to perform very well on this data set [1].

References

[1] Yann LeCun, Corinna Cortes, and Christopher J.C. Burges. The MNIST
database. http://yann.lecun.com/exdb/mnist/.

2


