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Abstract Data Collection Instance-based Approach
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database of Wi-Fi fingerprints. This system allows for both
manual and passive collection of training points, automatic

* Artificial Neural Network (ANN) consists of an input layer,
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* Data collected from different buildings

* User is stationary or walking at a steady pace
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* Models are consistently trained on the AppEngine
R S * Each building will have their own model parameters * Training models can be consistently tuned if we adopt a
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* One of the servlet instances accepts the request and
replies with an estimated indoor location
* App updates the location accordingly
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