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Abstract

Artificial Neural Networks

Data Collection
Global Positioning Systems (GPS) are highly accurate at 
predicting outdoor locations; however, due to signal 
attenuation, they are unreliable in indoor locations. 
Wireless mobile devices can be used to collect location 
fingerprints based on sensor readings and Wi-Fi signal 
strengths, and we have demonstrated the uses of machine 
learning algorithms to predict indoor locations based on 
these fingerprints within 2 meter accuracy. 

We propose an adaptive indoor positioning system that 
integrates with Google Maps and maintains a cloud-based 
database of Wi-Fi fingerprints. This system allows for both 
manual and passive collection of training points, automatic 
training, and seamless switching between the indoor 
models and other location services.

Architectural Model

Conclusions

• App sends Wi-Fi fingerprints and location data to the 
Firebase Realtime Database

• App also sends a request for machine learning to the App 
Engine

• One of the servlet instances accepts the request and 
replies with an estimated indoor location

• App updates the location accordingly

• Sensors: Accelerometer, Rotation vector, Magnetic field, 
Wireless Wi-Fi

• Data collected from different buildings
• User is stationary or walking at a steady pace

Methodology
• Wi-Fi fingerprints and location data are sent to the 

Firebase Realtime Database as training data
• Models are consistently trained on the AppEngine
• Each building will have their own model parameters
• Training models will be tuned using Grid Search 

(Hyperparameter tuning)

Instance-based Approach
• Instance-based learners predict values for a new instance 

by comparing the distance between the new instance 
and the training instances

• From our previous research[2], k-Nearest Neighbor (k-NN) 
algorithm was the best performing algorithm with an 
accuracy of 2 meters

• However, to improve the speed of k-NN, data need to be 
divided into small sections

References
1. Alice Zheng, 2015, Evaluating Machine Learning Models -- A Beginner's Guide, 

https://www.slideshare.net/AliceZheng3/evaluating-machine-learning-models-a-
beginners-guide

2. David Mascharka, and Eric Manley, 2016, Machine Learning for Indoor LocalizationUsing
Mobile Phone-Based Sensors

• Artificial Neural Network (ANN) consists of an input layer, 
some hidden layers and an output layer

• ANN works best with big data
• Several characteristics can be considered for training

• Training models can be consistently tuned if we adopt a 
cloud-based approach

• k-NN performs better for small data, but ANN performs 
better for big data

• Data from more buildings need to be collected
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