
Nifty Assignments
Nick Parlante
Julie Zelenski
(moderators)

Stanford University
nick.parlante@cs.stanford.edu

zelenski@cs.stanford.edu

Baker Franke
Code.org

baker@code.org
Arvind Bhusnurmath,

Karen Her, and Kristen Gee
University of Pennsylvania|
bhusnur4@seas.upenn.edu
karenher@seas.upenn.edu

kgee@seas.upenn.edu

Eric Manley
Timothy Urness
Drake University

eric.manley@drake.edu
timothy.urness@drake.edu

Marvin Zhang, Brian Hou,
and John DeNero

University of California, Berkeley
zhangmarvin@berkeley.edu

brian.hou@berkeley.edu
denero@cs.berkeley.edu

Josh Hug
University of California, Berkeley

hug@cs.berkeley.edu

Kevin Wayne
Princeton University

wayne@cs.princeton.edu

Keywords
Education; assignments; homeworks; examples; repository;
library; nifty; pedagogy

Abstract
I suspect that students learn more from our programming
assignments than from our much sweated-over lectures, with their
slide transitions, clip art, and joke attempts. A great assignment is
deliberate about where the student hours go, concentrating the
student's attention on material that is interesting and useful. The
best assignments solve a problem that is topical and entertaining,
providing motivation for the whole stack of work. Unfortunately,
creating great programming assignments is both time consuming
and error prone.
The Nifty Assignments special session is all about promoting and
sharing the ideas and ready-to-use materials of successful
assignments.
Each presenter will introduce their assignment, give a quick
demo, and describe its niche in the curriculum and its
strengths and weaknesses. The presentations (and the
descriptions below) merely introduce each assignment. A key
part of Nifty Assignments is the mundane but vital role of
distributing the materials – handouts, data files, starter code –
that make each assignment ready to adopt. The Nifty
Assignments home page, http://nifty.stanford.edu, gathers all the
assignments and makes them and their support materials freely
available. If you have an assignment that works well and would
be of interest to the CSE community, please consider applying to
present at Nifty Assignments. See the nifty.stanford.edu home
page for more information.

Greedy Mountain Paths (CS1) - Baker Franke
The basic premise: using a 2D array of elevation data representing
a mountainous region of the U.S., find the “best” way to walk
through the mountains. Topographic data lends itself nicely to
graphical representations. Students write their own algorithms to
find paths through the mountains (choosing their own level of
complexity) and render them by drawing a colored line through
the image. The initial suggestion for a path is to do a “greedy
walk” from west to east, choosing a path that represents the least
amount of change in elevation from step to step.
This assignment is great because it offers a context in which you
can introduce 2D arrays and build quickly from typical array
processing tasks to some very interesting and novel algorithms in
a way that is approachable to introductory students while offering
many different degrees of difficulty to choose from. While it can
be a “big” 2D array assignment – covering file I/O, graphics,
heuristics and greedy algorithms – there are many options for the
instructor to scale it down or use components of the assignment to
focus on a particular topic. The assignment is probably best
situated in the latter half of a CS1 course, it assumes students
have had “typical" experience programming up through linear
processing of arrays.

Restaurant Recommendations (CS1) -
Brian Hou, Marvin Zhang, and John DeNero
In this assignment, students apply basic machine learning
concepts to predict user ratings and cluster restaurants around a
university campus, using the Yelp Academic Dataset. The
assignment primarily illustrates CS1 concepts such as data
abstraction, sequence processing, and key-value pairs. The
machine learning ideas are all introduced by the project text as a
way of motivating course fundamentals.
The project builds a single interactive browser-based
visualization. First, restaurants are clustered by location using the
K-means algorithm. Second, ratings for restaurants (visualized
using a color scale) are predicted using linear regression (one
dimension only; no matrix inversions required). Test cases
provided with the project ensure that these pieces combine
correctly.
Interested students have a wide array of possible extensions. They
can use the Yelp API to make recommendations based on their
own Yelp ratings. To improve the accuracy of predictions,
students can implement other regression techniques or extract

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses,
contact the Owner/Author.
Copyright is held by the owner/author(s).
SIGCSE '16, March 02-05, 2016, Memphis, TN, USA
ACM 978-1-4503-3685-7/16/03.
http://dx.doi.org/10.1145/2839509.2844678

better features. To improve the visualization, students can dive
into web programming by using the Google Maps API to allow
for more interactivity (e.g. zooming and dragging) or
implementing variants of the main visualization (e.g. a weighted
Voronoi diagram).
The niftiest aspect of the assignment is that students are exposed
to the idea of machine learning in an intuitive and familiar setting,
without math or confusing terminology. They particularly like the
real-world application of recommending restaurants by analyzing
large amounts of data.

Rack-O (CS1) - Arvind Bhusnurmath,
Karen Her and Kristen Gee
The Rack-O assignment is based on a card game which is simple
to explain but with enough complexity to make an interesting
programming assignment. Rack-O is a card game that involves
rearranging your hand of cards in order to have an increasing
sequence. The cards are just numbered cards. There are no suits.
The programming of this game can be easily done via
manipulation of lists. We do the assignment in Python.
The overall goal for a student is to write a program such that a
user can play Rack-O against a computer player. For the computer
player, students are asked to come up with a strategy and then
translate it into code.
What makes the assignment nifty is that students soon realize that
strategies in this game are surprisingly easy to program. They
spend a fair bit of time coming up with newer and more
interesting ones. Some of the students take it upon themselves as a
challenge to write a computer player that will beat the grader.
We also bring the physical game to the lab session in which this
assignment is introduced. Most students have not seen it before
and they have fun playing the physical version before
programming it.

Movie Review Sentient Analysis (CS1/CS2) -
Eric Manley and Timothy Urness
Sentiment analysis is a text mining task that attempts to figure out
the general attitude (e.g. positive/negative attitude) conveyed by a
particular piece of text. It can be used for things like analyzing
product reviews or determining how the Twittersphere feels about
a particular presidential candidate's debate performance.
For the assignment, students write sentiment analysis programs by
training them on movie reviews from the Rotten Tomatoes
website which have been manually labeled with a score of how
positive or negative the review is. Their programs will be able to
automatically determine that reviews like “The film was a breath
of fresh air” have positive sentiment while reviews like “It made
me want to poke out my eyeballs” carry negative sentiment.
The assignment is nifty because it involves real data used with a
simple algorithm to achieve compelling results. It does not require
any special libraries or software and can be adapted to emphasize
a variety of different programming topics. We have used the
assignment in CS1 (in both Java and Python) to emphasize file
I/O, early control structures, accumulators/counters, and the
min/max algorithm. We have used it in CS2 (in C++) to
emphasize string manipulation and hash tables. It can also be used
to introduce students to the increasingly popular discipline of data
science within early programming courses, which was our
primary aim in support of our new Data Analytics major.
Assignment extensions involving validation, visualization, and
algorithm improvement are all possibilities.

HugLife: Testing Creatures (CS1/CS2) -
Josh Hug
Nearly every CS instructor has enjoyed watching little creatures
running around a two-dimensional grid-based world, spreading
across the grid gleefully or racing towards ecological catastrophe.
In HugLife, students program the AI and metabolic properties of
competing species, and set them loose to vie for space. Naturally,
any errors a student makes will be highly difficult to diagnose by
simply running the simulation. Even minor errors can upset the
delicate ecological balance of HugLife. Ultimately, the key lesson
of this assignment is disciplined use of testing to support a
complex system.
In the first part of the assignment, students write the code for the
Plip species, a photosynthetic creature that slowly gains energy
and replicates when it has become sufficiently plump. Then,
before they're allowed to set their Plips loose on the world, they
write a test suite that ensures that the Plips will behave properly.
Finally, once the Plip has been tested, students are allowed to
deploy them into the universe, which they will promptly fill with
green goodness.
Students then repeat the exercise for the Clorus species, a blue
carnivore that loves nothing more than consuming poor Plips.
With our suggested AI rules and metabolic features, the system
evolves into a not-quite stable equilibrium that can be addictive to
watch. Students can tweak the existing creatures, or add new
creatures of their own.
Most recently, this assignment was run as a two hour lab in Java
that introduced testing of large systems. However, it can also be
used as an introduction to inheritance and object oriented
programming. Implementations available in Java and Python.

Autocomplete Me (CS2) - Kevin Wayne
Write a program to implement autocomplete for a given set of
strings and weights. That is, given a query string, find all strings
in the set that start with the query string, sorted in descending
order of weight. Autocomplete is an important feature of many
modern applications. For example, Google uses autocomplete to
display suggestions in real time, as the user types a web search
query.

In one version of the assignment, students implement
autocomplete by combining sorting with binary search. The built-
in sort suffices for sorting the terms either by query or weight.
However, the variant of binary search required is nonstandard
(and not available in Java), so students must design and
implement their own version. To enable the binary search,
students must also implement an interesting custom order for the
terms (comparing two strings lexicographically, but using only
their first k characters). The assignment is nifty because

* It is a familiar and authentic application, for which
performance is critical.
* It brings sorting and binary search—often dull and poorly
motivated topics—to life.
* The accompanying interactive GUI and real-world datasets
make it fun for students.
* It does not require any scaffolding code.

