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Abstract—In this paper we investigate the problem of lo-
calizing a mobile device based on readings from its sensors
utilizing machine learning methodologies. We consider a real-
world environment, collect a dense set of 3110 datapoints, and
examine the performance of a substantial number of machine
learning algorithms. We found algorithms that have a mean
error as accurate as 0.76 meters, outperforming other indoor
localization systems. We also propose a hybrid instance-based
approach that results in a speed increase by a factor of ten with
no loss of accuracy in a live deployment over standard instance-
based methods. Further, we determine how less dense datasets
affect accuracy, important for use in real-world environments.
Finally, we demonstrate that these approaches are appropriate
for real-world deployment by evaluating their performance in
an online, in-motion experiment. The Learning Based Indoor
Positioning System (LIPS) Android application source has been
made available on the web.

I. INTRODUCTION

As smartphones and other mobile devices become ubiqui-
tous, applications that are able to harness contextual information
such as position become increasingly powerful. Uses for
indoor localization systems include context-based advertising
[1], emergency response and assisted living [8], robotics
applications [12], and indoor navigation.

Machine learning is a field of artificial intelligence dealing
with algorithms that improve performance over time with
experience. Supervised learning algorithms for regression are
trained on data with the correct value given along with each
variable. This allows the learner to build a model based on
the attributes that best fit the correct value. By giving more
data to the algorithm the model is able to improve. Learning
can be described in this way as improving performance. The
measure of performance is how well the algorithm predicts the
regression value given a set of variables or attributes. Machine
learning algorithms provide excellent solutions for building
models that generalize well given large amounts of data with
many attributes by discovering patterns and trends in the data;
a task that is often difficult or impossible by other means.

With an increasing number of sensors being made available
in the majority of mobile devices, large amounts of data can be
collected and used to aid in the localization process. Machine
learning algorithms are a natural solution for sifting through
these large datasets and determining the important pieces of
information for localization, building accurate models to predict
an indoor position. Machine learning algorithms may also

provide a fast, efficient method for indoor tracking, which will
often be more useful to applications than static localization.

In this study, we perform a large-scale analysis of a wide
range of machine learning algorithms using real-world data
for localization. We also present a hybrid approach for certain
learning algorithms to lower prediction times, making them
suitable for real-world use. Finally, we conduct an online, in-
motion evaluation of the best-performing models to show their
usefulness when fully deployed in a live, dynamic environment.

The paper is organized as follows. In Section II, we examine
other indoor localization systems and their limitations. In
Section III, we describe our application and data collection
process, the testing environment, and how our analysis was
conducted. Section IV presents the results of our analysis
on the full dataset and smaller partial sets of data in an
offline environment. This section also presents our hybrid
approach to localization and results from our online, in-motion
analysis. Finally, the paper concludes with a discussion of
future directions for research in Section V.

II. RELATED WORK

Indoor localization research has garnered a good deal of
interest from both academia and industry, with numerous
systems being proposed using a variety of technologies. A major
disadvantage of many of these systems (such as infrared [12],
ultrasound [11], and rfid [10]) is that they require substantial
infrastructure changes and incur a significant cost to deploy.
Effort has been made to devise localization systems that require
little to no infrastructure change using Bluetooth [3] and
WiFi signal strengths [6], [9] with some success. The systems
developed using WiFi signal strengths show promise but have
yet to receive widespread adoption. These systems can be
divided into two categories: those using a fingerprinting aproach
using algorithms for “nearest neighbor in signal space” and
those using more complex signal ranging algorithms.

Fingerprinting-type approaches can achieve accuracies up
to 2 meters on average [9], but current research is limited in
that only one or a few algorithms are considered and many of
the sensors available in most modern mobile devices are not
taken into account. Further, a very large dataset will require
a substantial amount of time to predict a position, hindering
real-world deployment.

Signal ranging-based algorithms can achieve similar accu-
racy, but require a substantial amount of network configuration
information and have difficulty modeling signal propagation



through obstacles. A few attempts have been made to remove
the requirement of knowledge about access points in range [6]
by using sniffer devices and a centralized localization server.
The downside is that localization cannot be performed on
the device itself. Additionally, these models are only able to
take into account signal strengths, missing other variables that
fingerprinting can handle.

In this paper, we expand on the fingerprinting approach
by exploring a variety of machine learning algorithms using
WiFi signal strengths and other embedded sensors. The model
built for an algorithm can be easily implemented as part of an
application and installed for localization on the device itself.

III. METHODOLOGY

The localization process consists of two distinct phases:
data collection and analysis. Before collecting our dataset,
some preprocessing was necessary to determine which WiFi
base station IDs to store. In an initial scan of the various
signals received throughout the building, we detected a few
portable hotspots likely from people in the building tethering
their devices, which were excluded from data collection.

A. Android Application

We developed an Android application called LIPS
(Learning Based Indoor Positioning System) which can be
used for both data collection and live deployment, and
we released it under an open-source license available at
github.com/davidmascharka/LIPS. The app allows
a data collector to select which building they are in, allowing
for collection of multiple datasets in multiple buildings. Each
building has the WiFi access points that will be used listed
in the application, and any access points received not in the
chosen building’s list will be ignored. The data collector can
also select a room or building size and a grid is drawn of the
proper size (optionally overlaid onto a map of the space) to
allow the data collector to more easily indicate their position.

B. Data Collection

The data collection phase consists of moving about the
building taking readings of the WiFi signal strengths and pulling
data from the other sensors in the device. The data is associated
with a user-provided location and written to a text file on the
device, which can be pulled from the device later for analysis.

A single datapoint, in our study, consists of 172 attributes
corresponding to values from each sensor on the device. We
took into account a value from the light sensor, GPS/Network
location data, signal strengths to 156 WiFi radios from 21 access
points, and z, y, and z values for the device accelerometer,
magnetometer, rotation sensor, and orientation sensor. The
number of WiFi signals to account for will vary depending
on where the localization system will be deployed. While we
recorded GPS/Network location data at each point, the accuracy
was generally extremely low in our experiments. However, for
areas near windows or doors, this may be useful to account
for in predicting a position, which motivated us to record it.

In total, we collected 3110 datapoints in the Cowles Library
at Drake University in a space about 62 meters wide by
39 meters long using a Motorola XT875. Collection of data

involved initiating a scan of WiFi networks in range of the
device to record up-to-date signal strengths. This and data from
all the other sensors in the device were written to a text file
with the data collector’s position in the room, indicated by the
data collector in the application itself. This process took an
average of five seconds to complete on our device.

Measurements were taken in a grid based on 2 foot by
2 foot ceiling tiles in the building and all measurements are
relative to the building. This is an arbitrary measure chosen
for ease of use in our case and can be modified to fit any
desired building layout. Latitude and longitude coordinates can
be interpolated. The map of collected datapoints can be seen
in Figure 2. The missing points are caused by obstacles. The
left portion of the building contained stacks of books while
the rest of the area consisted mostly of open space with tables
and desks throughout. We chose to include the area with the
stacks of books specifically because it represents a particularly
challenging environment.

C. Analysis

In the preprocessing and offline analysis phase, various
machine learning algorithms are trained and their errors
measured. Some preprocessing of the data may be beneficial,
depending on the algorithm.

The implementations of the algorithms used was provided
by the Waikato Environment for Knowledge Analysis (WEKA)
[7], developed at the University of Waikato. WEKA allows
for easy selection of various algorithms and parameter options,
which allowed us to test different parameters for each algorithm.

The final phase is an online analysis, in which the algorithms
are tested in real-world conditions including with the user in
motion, receiving new, unclassified data to process live. Live,
in-motion testing is difficult to conduct with accuracy and
to our knowledge has not been done to this extent for other
similar indoor localization systems. To test our algorithms, we
designed a route to walk through the building that would give
a representative time series for someone actually traversing the
building. While walking, new readings would be taken from
the sensors whenever available and given to the algorithms
to predict a position. The prediction was output along with a
timestamp and written to a text file on the device. A timestamp
was also recorded when the researcher reached each vertex of
the path and changed directions. The vertex timestamps were
used to calculate the researcher’s actual position at each time of
prediction by interpolating position between vertex timestamps.

IV. RESULTS

Because we were interested in performance not only in a
static, offline analysis but in a real-world environment in motion,
we split our analysis into two distinct phases: offline and online.
The offline analysis section presents the performance of several
algorithms in predicting a position. The online analysis section
introduces our hybrid approach and shows its performance in
live, in-motion testing.

A. Offline

1) Full Dataset: We examined the performance of 20 well-
known machine learning algorithms and 87 different parameter



TABLE 1. MEAN ERRORS OF EACH ALGORITHM IN THE & AND y

PREDICTIONS IN THE OFFLINE ANALYSIS.

Algorithm Best Mean Error (m) Algorithm Best Mean Error (m)
I H e y

K* (12) 1.134 0.762 SMOReg (6) 2.043 2.010
MultiScheme 1.135 0.762 RandomTree 2.150 1.950
Voting 1.058 1.015 MultilayerPerceptron (9) 1.963 2.530
k-Nearest Neighbor (22) 1.417 1.227 DecisionTable 2.595 1.964
RBFRegressor (11) 1.374 1.333 RBFNetwork (3) 2.798 3.434
RandomForest 1.454 1.470 LinearRegression 3.478 3.362
M5P 1.671 1.429 LWL (6) 5.199 4.159
M5Rules 1.756 1.604 DecisionStump 6.220 4.851
REPTree 1.790 1.665 SimpleLinearRegression 6.655 4.822
MLPReg (6) 1.821 2.143 ZeroR 20.100 7.249
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Fig. 1. Performance of the best algorithms on each dataset in offline analysis.

settings on our dataset. All results were obtained using a
tenfold cross-validation and verified with ten repetitions. Table I
shows the table of results, giving the best mean error for each
algorithm. The number in parentheses indicates how many
parameter variations of the algorithm were trained.

The best-performing algorithm was the K* algorithm [4],
an instance-based approach that uses an entropy-based distance
function, with mean errors of 1.13 and 0.76 meters for x and
y position, respectively, for an absolute mean error of 1.36
meters. Another algorithm that performed well for both x and y
classification is the RBFRegressor implementation [5], a radial
basis function network trained in a fully supervised manner,
with mean errors of 1.37 and 1.33 meters, respectively, resulting
in an absolute mean error of 1.91 meters. When combining
these algorithms using a voting scheme taking the average of
both predictions, the = error is reduced to 1.05 meters, while

the y error increases slightly from only using K* to 1.01 meters.

2) Partial Datasets: We were also interested in how
performance may deteriorate with less training data, which
will be useful for faster and easier real-world deployment. We
examined algorithm accuracy using one-half the full dataset
and one-quarter the full dataset, with both sets of data in a grid
pattern like the full dataset. Table II shows the results of each
analysis. A comparison of the four most accurate algorithms
over each dataset can be seen in Figure 1.

The error using half the original dataset results in slightly
increased accuracy for most of the tested algorithms. The K*
error is reduced to 0.563 meters in = prediction and 0.395
meters in y prediction, resulting in an absolute error of 0.763
meters. The RBF algorithm’s error is also slightly reduced
to 1.113 meters and 1.053 meters for x and y prediction

respectively, which gives an absolute error of 1.532 meters.

This slight reduction leads us to believe that the full dataset
may have a density that results in overfitting and too little
variation between sets of readings. It may also be the case that
the RBF model performs better using half the data because
the network built on the full set was too small to completely
capture the complexity of the data.

The errors when using only one quarter of the original

TABLE II. MEAN ERRORS IN & AND y POSITION FOR PARTIAL DATA
WITH DIFFERENCES FROM THE FULL SET. BETTER PERFORMANCE
COMPARED WITH THE FULL DATASET IS INDICATED BY GREEN WITH WORSE
PERFORMANCE IN RED.

Algorithm Mean x Error (m) Mean y Error (m) Difference (m) x/y
‘ Half | Quarter Half | Quarter Half | Quarter

K* 0.563 1.077 0.395 0.831 -0.572/-0.368 -0.058/+0.068
k-Nearest Neighbor 0.695 1.396 0.841 1.475 -0.723/-0.387 -0.022/+0.247
RBFRegressor 1.113 1.561 1.053 1.511 -0.26/-0.280 +0.187/+0.178
RandomForest 1.146 1.567 1.194 1.622 -0.308/-0.277 +0.113/+0.151
M5P 1.450 1.823 1.603 2.030 -0.221/+0.173 +0.152/+0.600
M5Rules 1.597 2.067 1.847 2.118 -0.159/+0.242 +0.311/+0.513
REPTree 1.707 2249 1.768 2.048 -0.084/+0.102 +0.458/+0.382
SMOReg 1.250 2.073 1.268 2.067 -0.794/-0.742 +0.029/+0.057
RandomTree 1.292 2.085 1.195 2.115 -0.858/-0.755 -0.065/+0.165
MultilayerPerceptron 1.743 2.524 2.176 3.097 -0.221/-0.355 +0.560/+0.566
DecisionTable 2707 2.743 2.560 2.975 +0.112/+0.596 +0.148/+1.011
RBFENetwork 2.859 2932 2.877 3.158 +0.615/-0.558 +0.1 .277
LinearRegression 3414 3.456 3.426 3.463 -0.064/+0.063 -0.022/+0.100
LWL 5.157 5.395 5.456 5.139 +0.317/1.297 +0.195/+0.980
DecisionStump 6.242 6.248 6.267 6.279 +0.021/+1.415 +0.027/+1.427
SimpleLinearRegression 6.651 6.626 6.651 6.632 +0.094/+1.829 -0.030/+1.810
ZeroR 20.092 20.092 20.086 20.086 -0.0085/+12.837 -0.015/+12.841

dataset increased slightly on average, up to almost half a meter.
This indicates the optimal density of data for our algorithms is
closer to one reading every 1.5 meters.

B. Online

In the online phase we saved the models for the two best-
performing algorithms on the full dataset to test. In total we
collected 27 sets of test results for K* and 20 for the RBF
model. The bulk of these results were collected several months
after our initial data collection, indicating some stability of the
original data and algorithms.

In a live setting, the difference in how these two algorithms
work is very important. As K* is instance-based, it compares
each new datapoint to every classified point in the dataset. In
contrast, the RBF algorithm learns weights for each of the 172
attributes in the data and must only multiply these weights
by the attribute values of a new datapoint, then add these
together to predict a position. This is a much faster operation
than the entropy calculation for each of the 3110 points in the
dataset and makes a substantial difference in a live environment.
Initially, K* took 30 to 45 seconds to calculate a position; much
too long for real-world applications. In contrast, the RBF model
predicts a location almost instantly.

1) Proposed Hybrid Approach: To solve the time problem
for K* we decided to break our full dataset into smaller
partitions and trained K* classifiers on each partition. Our
partitioning can be seen in Figure 2. To determine which
partition of the building the user was in, and thus which K*
classifier to use to calculate the user’s position, we again looked
at machine learning methods, settling on a random forest model
[2] which achieved over 96% accuracy in a tenfold cross-
validation. This reduced the number of comparisons from 3110
to about 400 to 500 and substantially increased the speed from
30-45 seconds to 3 seconds: fast enough to be useful in a
real-world setting. A hybrid approach such as this may also
speed up other instance-based localization systems.

2) Online, Static Results: We were interested first in how
the algorithms would perform with a user standing still at
a point in the building. K* achieved accuracies within three
meters at every point, with most predictions within one meter
of the user’s actual position. The RBF regression algorithm
performed similarly in a static online test.
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Fig. 2. Partitioned dataset, where each color corresponds to a partition.

TABLE III. ONLINE, IN-MOTION RESULTS SHOWING EACH
ALGORITHM’S AVERAGE ERROR.
K* RBF Regression
Constant Changing Constant Changing
Orientation Orientation Orientation Orientation
Slow 6.03m 5.08m 7.85m 7.39m
Normal 6.39m 6.23m 8.86m 9.21m
Fast 9.19m 8.53m 10.15m 9.85m

3) Online, In-motion Results: After the static testing, we
were interested in the performance of both algorithms in an
online, in-motion testbed. We collected datasets with the user
walking at various paces along the planned route to determine
whether speed of movement affected accuracy. We looked at
a normal pace of about 1.15 meters per second, a slow pace
of 0.75 meters per second, and a quick pace of 1.69 meters
per second. We also wanted to determine whether changing
the device orientation would affect accuracy. Since data was
collected with the device held facing south, we walked some
routes constantly holding the device facing south. We also
walked routes allowing the device to change orientation as we
walked, mimicking a real-world user. The results can be seen
in Table III. A single walked route using K* at a slow pace can
be seen in Figure 3. The starting point is at x coordinate 4.5,
y coordinate 1.5 in the bottom left and end point = coordinate
32.5, y coordinate 28.5 near the middle in red. The black line
indicates the path walked with square points as vertices. The
circle points in the plot indicate predicted positions.

Allowing the device to change orientation as the user walks
does not appear to significantly affect accuracy. Removing this
attribute may help increase accuracy as algorithms would have
fewer attributes to build a model on.

It is significant that the testing was done at the library
at Drake University. The left area of the live testing was
amidst densely-packed bookshelves. Given that wireless signal
strengths contributed most to the calculated position and the
bookshelves likely affected signal propagation a great deal this
area tended to have the highest error. Removing the positions in
this area from our calculations improved accuracy an average

0 20 40 60 80 100
Fig. 3. Live Test: K* algorithm predicting position as the researcher walks
the path in black allowing the device to change orientation. Color indicates
time starting at blue, ending at red with smooth interpolation between.

of one meter, which may indicative of a typical environment.

V. CONCLUSIONS AND FUTURE WORK

In this work, we examined a large number of machine
learning algorithms for indoor localization based on the sensors
readily available in smartphones. We found algorithms as
accurate as (.76 meters on average in a real-world environ-
ment without the need for dedicated hardware or changes to
infrastructure, outperforming algorithms considered in previous
studies [9]. Our online, in-motion experiments show that our
proposed hybrid approach achieved accuracy on par with the
best offline instance-based methods with the speed of non-
instance-based methods.

In the future, we will explore using multiple devices to
collect and evaluate models on. Some small-scale experiments
have shown promise in collecting datasets from multiple devices
and aggregating them, then allowing the algorithms to build a
model from this combined dataset. Other areas to investigate
include taking multiple readings at different times, which may
improve accuracy and reliability since signal strengths may
fluctuate throughout the day. We will also investigate the impact
of receiving delayed sensor readings for in-motion localization.
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